skip to main content


Title: Virtual Growing Pains: Initial Lessons Learned from Organizing Virtual Workshops, Summits, Conferences, and Networking Events during a Global Pandemic
Abstract

For many, 2020 was a year of abrupt professional and personal change. For the aquatic sciences community, many were adapting to virtual formats for conducting and sharing science, while simultaneously learning to live in a socially distanced world. Understandably, the aquatic sciences community postponed or canceled most in‐person scientific meetings. Still, many scientific communities either transitioned annual meetings to a virtual format or inaugurated new virtual meetings. Fortunately, increased use of video conferencing platforms, networking and communication applications, and a general comfort with conducting science virtually helped bring the in‐person meeting experience to scientists worldwide. Yet, the transition to conducting science virtually revealed new barriers to participation whereas others were lowered. The combined lessons learned from organizing a meeting constitute a necessary knowledge base that will prove useful, as virtual conferences are likely to continue in some form. To concentrate and synthesize these experiences, we showcase how six scientific societies and communities planned, organized, and conducted virtual meetings in 2020. With this consolidated information in hand, we look forward to a future, where scientific meetings embrace a virtual component, so to as help make science more inclusive and global.

 
more » « less
Award ID(s):
1702991 1926388 1759865
NSF-PAR ID:
10453486
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography Bulletin
Volume:
30
Issue:
1
ISSN:
1539-607X
Page Range / eLocation ID:
p. 1-11
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To provide early career scientists with professional development related to science communication, we developed a full day workshop funded by the National Science Foundation (NSF) entitledDeveloping the Science of Science Communication. This workshop has been funded since 2019 by NSF and presented in both virtual and in‐person formats. Because of the success of the virtual 2021 workshop and building upon foundations from prior years (in‐person in February 2019 and February 2020), a second virtual workshop was held in conjunction with the Ocean Sciences Meeting in January 2022. 2022 workshop attendees voluntarily participated in a full day virtual workshop comprised of verbal and visual communication skill sessions. In previous years, attendance was capped at 50 participants. In 2022, only 17 participants completed the pre‐workshop survey. The all‐day workshop included two presentation skills‐focused sessions and two poster design sessions. Participants overwhelmingly agreed that they (a) would recommend the workshop to others and (b) found the workshop content would be useful in their careers. The low attendance in 2022 is believed to be due to the virtual format combined with the timing of the workshop. In years prior, the workshop was held the day before the conference. This year, we attempted to hold the workshop 1 month prior to the conference to help students prepare in advance—we think most students simply had not prepared their presentations this far in advance. NSF has already funded an exciting future workshop structure for 2023. The workshop will be held across 2 days with a virtual “pre‐workshop” day for those who are ready and would like extra time and materials along with a second, in‐person workshop the day prior to the conference in Palma de Mallorca, Spain in conjunction with the June 2023 Aquatic Sciences Meeting.

     
    more » « less
  2. Freitag, Nancy E. (Ed.)
    The National Summer Undergraduate Research Program (NSURP) is a mentored summer research program in biosciences for undergraduate students from underrepresented backgrounds in science, technology, engineering, and mathematics (STEM). Conducted virtually over 8 weeks every summer starting in 2020, NSURP provides accessible and flexible research experiences to meet the needs of geographically diverse and schedule-constrained students. Drawing from mentee reporting and surveys conducted within the NSURP framework involving over 350 underrepresented minority undergraduate students over three cohorts (2020–2022), matched with mentors, this paper highlights the potential benefits of students participating in virtual mentored research experiences. In addition to increased access to quality research experiences for students who face travel or academic setting constraints, we found that virtual mentoring fosters cross-cultural collaborations, generates novel research questions, and expands professional networks. Moreover, this study emphasizes the role of virtual mentorship opportunities in fostering inclusivity and support for individuals from underrepresented groups in STEM fields. By overcoming barriers to full participation in the scientific community, virtual mentorship programs can create a more equitable and inclusive environment for aspiring researchers. This research contributes to the growing body of literature on the effectiveness and the potential of virtual research programs and mentorship opportunities in broadening participation and breaking down barriers in STEM education and careers.

    IMPORTANCE

    Summer Research Experiences for Undergraduates (REUs) are established to provide platforms for interest in scientific research and as tools for eventual matriculation to scientific graduate programs. Unfortunately, the COVID-19 pandemic forced the cancellation of in-person programs for 2020 and 2021, creating the need for alternative programming. The National Summer Undergraduate Research Project (NSURP) was created to provide a virtual option to REUs in microbiology to compensate for the pandemic-initiated loss of research opportunities. Although in-person REUs have since been restored, NSURP currently remains an option for those unable to travel to in-person programs in the first place due to familial, community, and/or monetary obligations. This study examines the effects of the program's first 3 years, documenting the students’ experiences, and suggests future directions and areas of study related to the impact of virtual research experiences on expanding and diversifying science, technology, engineering, and mathematics.

     
    more » « less
  3. Abstract

    Research internships provide students with invaluable experience conducting independent research, contributing to larger research programs, and embedding in a professional scientific setting. These experiences increase student persistence in ecology and other science, technology, engineering, and mathematics (STEM) fields and promote the inclusion of students who lack opportunities at their home institutions and/or are from groups that are underrepresented in STEM. While many ecology internship programs were canceled during the 2020 COVID‐19 pandemic, others successfully adapted to offer virtual internships for the first time. Though different from what many researchers and students envision when they think of internships, virtual ecology internship programs can create more accessible opportunities and be just as valuable as in‐person opportunities when research programs and advisors develop virtual internships with intention and planning. Here, we highlight six ways to structure a virtual intern project, spanning a spectrum from purely computer‐based opportunities (e.g., digital data gathering, data analysis, or synthesis) to fully hands‐on research (e.g., sample processing or home‐based experiments). We illustrate examples of these virtual projects through a case study of the Smithsonian Environmental Research Center's 2020 Virtual Internship Program. Next, we provide 10 recommendations for effectively developing a virtual internship program. Finally, we end with ways that virtual internships can avoid the limitations of in‐person internships, as well as possible solutions to perceived pitfalls of virtual internships. While virtual internships became a necessity in 2020 due to COVID‐19, the development and continuation of virtual internships in future can be a valuable tool to add to the suite of existing internship opportunities, possibly further promoting diversity, equity, and inclusion in ecology and STEM.

     
    more » « less
  4. The First2 Network is an alliance of higher education institutions across the State of West Virginia striving to improve science, technology, engineering or math (STEM) education by supporting rural, first-generation, and underrepresented college students pursuing STEM majors.  Over the summers of 2019 and 2020, the First2 Network delivered two-week summer research immersion experiences at various institutions throughout West Virginia. The 2019 program was delivered on-campus at four universities while the 2020 program was delivered virtually, due to the COVID-19 pandemic, across nine sites. Before and after the immersion experience, students who participated in the program completed a variety of survey questionnaires for the assessment of their interests, expectations, identity and belonging in STEM. We found that the in-person experience in 2019 had better outcomes compared to the virtual experience, suggesting students conducting research directly under their faculty supervisors in-person and on-site will have a more positive impact on their STEM education and career. However, participation in the virtual format still resulted in an improvement in belonging and STEM identity, indicating that connecting with students remotely is still worthwhile when it is the most viable option. The student population in Appalachia faces a number of academic barriers, so there is much to gain by finding new ways to reach as many students as possible with early career development programs. 
    more » « less
  5. Due to the COVID-19 crisis preventing face-to-face interaction, three National Science Foundation (NSF)-funded centers employed a virtual/remote format for their summer Research Experiences for Teachers (RET) Programs, reaching K-12 STEM teachers across the country. Teachers participated virtually from four different states by joining engineering research teams from four different universities in three different RET programs. Lab experiences depended on the nature of the research and institution-specific guidelines for in-lab efforts, resulting in some teachers conducting lab experiments with materials sent directly to their homes, some completing their experience fully online, and some completing portions of lab work in person on campus. Each teacher developed an engineering lesson plan based on the corresponding center’s research to be implemented either in person or virtually during the 2020-2021 academic school year. Research posters, created with support from graduate student and faculty mentors, were presented to industry partners, education partners, center members, and the NSF. Support for the teachers as they implement lessons, present posters, and disseminate their developed curricula, has continued throughout the year. Common survey and interview/focus group protocols, previously designed specifically for measuring the impact of engineering education programs, were adapted and used to separately evaluate each of the three virtual programs. Strengths and suggested areas of improvement will be explored and discussed to inform future use of the common evaluation instruments. Additionally, preliminary results, highlighting general successes and challenges of shifting RET programming to a virtual/remote format across the three centers, will be discussed. 
    more » « less