skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Embedded, graph‐theoretically defined many‐body approximations for wavefunction‐in‐DFT and DFT‐in‐DFT : Applications to gas‐ and condensed‐phase ab initio molecular dynamics, and potential surfaces for quantum nuclear effects
Abstract We present a graph‐theoretic approach to adaptively compute many‐body approximations in an efficient manner to perform (a) accurate post‐Hartree–Fock (HF) ab initio molecular dynamics (AIMD) at density functional theory (DFT) cost for medium‐ to large‐sized molecular clusters, (b) hybrid DFT electronic structure calculations for condensed‐phase simulations at the cost of pure density functionals, (c) reduced‐cost on‐the‐fly basis extrapolation for gas‐phase AIMD and condensed phase studies, and (d) accurate post‐HF‐level potential energy surfaces at DFT cost for quantum nuclear effects. The salient features of our approach are ONIOM‐like in that (a) the full system (cluster or condensed phase) calculation is performed at a lower level of theory (pure DFT for condensed phase or hybrid DFT for molecular systems), and (b) this approximation is improved through a correction term that captures all many‐body interactions up to any given order within a higher level of theory (hybrid DFT for condensed phase; CCSD or MP2 for cluster), combined through graph‐theoretic methods. Specifically, a region of chemical interest is coarse‐grained into a set of nodes and these nodes are then connected to form edges based on a given definition of local envelope (or threshold) of interactions. The nodes and edges together define a graph, which forms the basis for developing the many‐body expansion. The methods are demonstrated through (a) ab initio dynamics studies on protonated water clusters and polypeptide fragments, (b) potential energy surface calculations on one‐dimensional water chains such as those found in ion channels, and (c) conformational stabilization and lattice energy studies on homogeneous and heterogeneous surfaces of water with organic adsorbates using two‐dimensional periodic boundary conditions.  more » « less
Award ID(s):
1665336
PAR ID:
10453503
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Quantum Chemistry
Volume:
120
Issue:
21
ISSN:
0020-7608
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Using water as a hydrogen source is a promising strategy for alternative hydrogen peroxide (H 2 O 2 ) synthesis. By a series of ab initio molecular dynamics (AIMD) simulations and reactive molecular dynamics (RxMD) calculations, fundamental details have been revealed regarding how liquid water interacts with oxygen on a metal-free carbon nitride catalyst, and the two-step reaction mechanism of H 2 O 2 synthesis. Metal-free porous graphitic carbon nitride (g-C 5 N 2 ) catalysts are also systematically screened by using a thermodynamics approach through the ab initio density functional theory (DFT) method. Key results include: (a) pristine g-C 5 N 2 is most active to catalyze the H 2 O/O 2 reaction and produce H 2 O 2 ; (b) the adsorption and activation of water at unsaturated carbon sites of g-C 5 N 2 are critical to initiate the H 2 O/O 2 reaction, producing HOO* intermediates; (c) interfacial free water and adsorbed water at g-C 5 N 2 form a synergetic proton transfer cluster to promote HOO* intermediates to form H 2 O 2 . To the best of our knowledge, this work presents long-needed theoretical details of direct H 2 O 2 synthesis via the water/oxygen system, which can guide further optimization of carbon-based catalysts for oxygen reduction reactions. 
    more » « less
  2. A database for the Cr-Ni-V system was constructed by modeling the binary Cr-V and ternary Cr-Ni-V systems using the CALPHAD approach aided by density functional theory (DFT)-based first-principles calculations and ab initio molecular dynamics (AIMD) simulations. To validate this new database, a functionally graded material (FGM) using Ni-20Cr and V was fabricated using directed energy deposition additive manufacturing (DED AM) and experimentally characterized. The deposited Ni-20Cr was pure fcc phase, while increasing V content across the gradient resulted in sigma phase formation, followed by bcc phase formation. The experimentally measured phases were compared with CALPHAD computations made using a Cr-Ni-V thermodynamic database from the literature and the database developed in the present work. The newly developed database was shown to better predict the experimentally observed phases due to its accurate modeling of binary systems within the database and the ternary liquid phase, which is critical for accurate Scheil calculations. 
    more » « less
  3. This computational study characterises charge-transfer-to-solvent (CTTS) states of aqueous thiocyanate anion using equation-of-motion coupled-cluster methods combined with electrostatic embedding quantum mechanics/molecular mechanics (QM/MM) scheme. Equilibrium sampling was carried out using classical molecular dynamics (MD) with standard force-fields and QM/MM ab initio molecular dynamics (AIMD) using density functional theory. The two calculations yield significantly different local structure around solvated SCN− . Because of the diffuse character of CTTS states, they are very sensitive to the local structure of solvent around the solute and its dynamic fluctuations. Owing to this sensitivity, the spectra computed using MD and AIMD based snapshots differ considerably. This sensitivity suggests that the spectroscopy exploiting CTTS transitions can provide an experimental handle for assessing the quality of force-fields and density functionals. By combining CTTS-based spectroscopies with reliable theoretical modeling, detailed microscopic information of the solvent structure can be obtained. We present a robust computational protocol for modeling spectra of solvated anions and emphasise the use of an ab initio characterization of individual electronic transitions as CTTS or local excitations. 
    more » « less
  4. An exploration of the “on-the-fly” nonadiabatic couplings (NACs) for nonradiative relaxation and recombination of excited states in 2D Dion–Jacobson (DJ) lead halide perovskites (LHPs) is accelerated by a machine learning approach. Specifically, ab initio molecular dynamics (AIMD) of nanostructures composed of heavy elements is performed with the use of machine-learning force-fields (MLFFs), as implemented in the Vienna Ab initio Simulation Package (VASP). The force field parametrization is established using on-the-fly learning, which continuously builds a force field using AIMD data. At each time step of the molecular dynamics (MD) simulation, the total energy and forces are predicted based on the MLFF and if the Bayesian error estimate exceeds a threshold, an ab initio calculation is performed, which is used to construct a new force field. Model training of MLFF and evaluation were performed for a range of DJ-LHP models of different thicknesses and halide compositions. The MLFF-MD trajectories were evaluated against pure AIMD trajectories to assess the level of discrepancy and error accumulation. To examine the practical effectiveness of this approach, we have used the MLFF-based MD trajectories to compute NAC and excited-state dynamics. At each stage, results based on machine learning are compared to traditional ab initio based electronic dissipative dynamics. We find that MLFF-MD provides comparable results to AIMDs when MLFF is trained in an NPT ensemble. 
    more » « less
  5. Herein we interrogate a type of heterolytic fragmentation reaction called a ‘divergent fragmentation’ using density functional theory (DFT), natural bond orbital (NBO) analysis, ab initio molecular dynamics (AIMD), and external electric field (EEF) calculations. We demonstrate that substituents, electrostatic environment and non-statistical dynamic effects all influence product selectivity in reactions that involve divergent fragmentation pathways. Direct dynamics simulations reveal an unexpected post-transition state bifurcation (PTSB), and EEF calculations suggest that some transition states for divergent pathways can, in principle, be selectively stabilized if an electric field of the correct magnitude is oriented appropriately. 
    more » « less