skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on February 27, 2025

Title: Additively manufactured Ni-20Cr to V functionally graded material: Computational predictions and experimental verification of phase formations
A database for the Cr-Ni-V system was constructed by modeling the binary Cr-V and ternary Cr-Ni-V systems using the CALPHAD approach aided by density functional theory (DFT)-based first-principles calculations and ab initio molecular dynamics (AIMD) simulations. To validate this new database, a functionally graded material (FGM) using Ni-20Cr and V was fabricated using directed energy deposition additive manufacturing (DED AM) and experimentally characterized. The deposited Ni-20Cr was pure fcc phase, while increasing V content across the gradient resulted in sigma phase formation, followed by bcc phase formation. The experimentally measured phases were compared with CALPHAD computations made using a Cr-Ni-V thermodynamic database from the literature and the database developed in the present work. The newly developed database was shown to better predict the experimentally observed phases due to its accurate modeling of binary systems within the database and the ternary liquid phase, which is critical for accurate Scheil calculations.  more » « less
Award ID(s):
2050069
NSF-PAR ID:
10496304
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Alloys and Compounds
Volume:
985
Issue:
C
ISSN:
0925-8388
Page Range / eLocation ID:
174011
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Both CALPHAD (CALculation of PHAse Diagrams) and machine-learning (ML) approaches were employed to analyze the phase formation in 2,436 experimentally measured high entropy alloy (HEA) compositions consisting of various quinary mixtures of Al, Co, Cr, Cu, Fe, Mn, and Ni. CALPHAD was found to have good capabilities in predicting the BCC/B2 and FCC phase formation for the 1,761 solid-solution-only compositions, excluding HEAs containing an amorphous phase (AM) or/and intermetallic compound (IM). Phase selection rules were examined systematically using several parameters and it revealed that valency electron concentration (VEC) < 6.87 and VEC > 9.16 are the conditions for the formation of single-phase BCC/B2 and FCC, respectively; and CALPHAD could predict this with essentially 100% accuracy. Both CALPHAD predictions and experimental observations show that more BCC/B2 alloys are formed over FCC alloys as the atomic size difference between the elements increases. Four machine learning (ML) algorithms, decision tree (DT), k-nearest neighbor (KNN), support vector machine (SVM), and artificial neural network (ANN), were employed to study the phase selection rules for two different datasets, one consisting of 1,761 solid-solution (SS) HEAs without AM and/or IM phases, and the other set consisting of all the 2,436 HEA compositions. Cross validation (CV) was performed to optimize the ML models and the CV accuracies are found to be 91.4%, 93.1%, 90.2%, 89.1% for DT, KNN, SVM, and ANN respectively in predicting the formation of BCC/B2, BCC/B2 + FCC, and FCC; and 93.6%, 93.3%, 95.5%, 92.7% for DT, KNN, SVM, and ANN respectively in predicting SS, AM, SS + AM, and IM phases. Sixty-six experimental bulk alloys with SS structures are predicted with trained ANN model, and the accuracy reaches 81.8%. VEC is found to be most important parameter in phase prediction for BCC/B2, BCC/B2 + FCC, and FCC phases. Electronegativity difference and FCC-BCC-index (FBI) are the two additional dominating features in determining the formation of SS, AM, SS + AM, and IM. A separation line ΔH_mix=28.97×VEC-246.77 was found in the VEC-vs-ΔH_mix plot to predict the formation of single-phase BCC/B2 or FCC with a 96.2% accuracy (ΔH_mix = mixing enthalpy). These insights will be very valuable for designing HEAs with targeted crystal structures. 
    more » « less
  2. Hypothetical half-Heusler (HH) ternary alloy of CoVSn has already been computationally investigated for possible spintronics and thermoelectric applications. We report the experimental realization of this compound and the characterizations of its thermoelectric properties. The material was synthesized by a solid-state reaction of the stoichiometric amounts of the elements via powder metallurgy (30 h mechanical milling and annealing at 900 °C for 20 h) and spark plasma sintering (SPS). The temperature-dependent ternary thermodynamic phase diagram of Co-V-Sn was further calculated. The phase diagram and detailed analysis of the synthesized material revealed the formation of the non-stoichiometry HH CoVSn, mixed with the binary intermetallic phases of SnV3, Co2Sn, and Co3V. The combination of X-ray diffraction, energy-dispersive X-ray spectroscopy, and thermoelectric transport properties confirmed the formation of a multi-phase compound. The analysis revealed the predicted thermoelectric features (zT = 0.53) of the highly doped CoVSn to be compromised by the formation of intermetallic phases (zT ≈ 0.007) during synthesis. The additional phases changed the properties from p- to overall n-type thermoelectric characteristics. 
    more » « less
  3. Abstract Ni-based superalloys offer a unique combination of mechanical properties, corrosion resistance and high temperature performance. Near ambient pressure X-ray photoelectron spectroscopy was used to study in operando the initial steps of oxidation for Ni-5Cr, Ni-15Cr, Ni-30Cr and Ni-15Cr-6W at 500 °C, p(O 2 )=10 −6 mbar. The comparison of oxide evolution for these alloys quantifies the outsized impact of W in promoting chromia formation. For the binary alloys an increase in chromia due to Cr-surface enrichment is followed by NiO nucleation and growth thus seeding a dual-layer structure. The addition of W (Ni-15Cr-6W) shifts the reaction pathways towards chromia thus enhancing oxide quality. Density functional theory calculations confirm that W atoms adjacent to Cr create highly favorable oxygen adsorption sites. The addition of W supercharges the reactivity of Cr with oxygen essentially funneling oxygen atoms into Cr sites. The experimental results are discussed in the context of surface composition, chemistry, reactant fluxes, and microstructure. 
    more » « less
  4. Abstract

    Atomistic simulations are crucial for predicting material properties and understanding phase stability, essential for materials selection and development. However, the high computational cost of density functional theory calculations challenges the design of materials with complex structures and composition. This study introduces new data acquisition strategies using Bayesian-Gaussian optimization that efficiently integrate the geometry of the convex hull to optimize the yield of batch experiments. We developed uncertainty-based acquisition functions to prioritize the computation tasks of configurations of multi-component alloys, enhancing our ability to identify the ground-state line. Our methods were validated across diverse materials systems including Co-Ni alloys, Zr-O compounds, Ni-Al-Cr ternary alloys, and a planar defect system in intermetallic (Ni1−x, Cox)3Al. Compared to traditional genetic algorithms, our strategies reduce training parameters and user interaction, cutting the number of experiments needed to accurately determine the ground-state line by over 30%. These approaches can be expanded to multi-component systems and integrated with cost functions to further optimize experimental designs.

     
    more » « less
  5. Abstract

    This work presents a new method for processing single-crystal semiconductors designed by a computational method to lower the process temperature. This research study is based on a CALPHAD approach (ThermoCalc) to theoretically design processing parameters by utilizing theoretical phase diagrams. The targeted material composition consists of Bi–Se2–Te–Sb (BSTS). The semiconductor alloy contains three phases, hexagonal, rhombohedral-1, and rhombohedral-2 crystal structures, that are presented in the phase field of the theoretical pseudo-binary phase diagram. The semiconductor is also evaluated by applying Hume–Rothery rules along with the CALPHAD approach. Thermodynamic modelling suggests that single-crystals of BSTS can be grown at significantly lower temperatures and this is experimentally validated by low-temperature growth of single crystalline samples followed by exfoliation, compositional analysis, and diffraction.

     
    more » « less