skip to main content


Title: Lasing from InP Nanowire Photonic Crystals on InP Substrate
Abstract

2D photonic crystal (PhC) lasing from an InP nanowire array still attached to the InP substrate is demonstrated for the first time. The undoped wurtzite InP nanowire array is grown by selective area epitaxy and coated with a 10 nm thick Al2O3film to suppress atmospheric oxidation and band‐bending effects. The PhC array displays optically pumped lasing at room temperature at a pulsed threshold fluence of 14 µJ cm−2. At liquid nitrogen temperature, the array shows lasing under continuous wave excitation at a threshold intensity of 500 W cm−2. The output power of the single mode laser line reaches values of 470 µW. Rate equation calculations indicate a quality factor ofQ ≈ 1000. Investigations near threshold reveal that lasing starts from isolated islands within the pumped region before coherently merging into a single homogeneous area with increasing excitation power. This field emits a lasing mode with an average off‐normal angle of ≈6°. Single mode lasing with the nanoarray still attached to the InP substrate opens new design opportunities for electrically pumped PhC laser light sources.

 
more » « less
Award ID(s):
2004768
NSF-PAR ID:
10453506
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
9
Issue:
3
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study presents the growth and characterization of an 8.1 μm-emitting, InGaAs/AlInAs/InP-based quantum cascade laser (QCL) formed on an InP-on-Si composite template by metalorganic chemical vapor deposition (MOCVD). First, for the composite-template formation, a GaAs buffer layer was grown by solid-source molecular-beam epitaxy on a commercial (001) GaP/Si substrate, thus forming a GaAs/GaP/Si template. Next, an InP metamorphic buffer layer (MBL) structure was grown atop the GaAs/GaP/Si template by MOCVD, followed by the MOCVD growth of the full QCL structure. The top-surface morphology of the GaAs/GaP/Si template before and after the InP MBL growth was assessed via atomic force microscopy, over a 100 μm2 area, and no antiphase domains were found. The average threading dislocation density (TDD) for the GaAs/GaP/Si template was found to be ∼1 × 109 cm−2, with a slightly lower defect density of ∼7.9 × 108 cm−2 after the InP MBL growth. The lasing performance of the QCL structure grown on Si was compared to that of its counterpart grown on InP native substrate and found to be quite similar. That is, the threshold-current density of the QCL on Si, for deep-etched ridge-guide devices with uncoated facets, is somewhat lower than that for its counterpart on native InP substrate, 1.50 vs 1.92 kA/cm2, while the maximum output power per facet is 1.64 vs 1.47 W. These results further demonstrate the resilience of QCLs to relatively high residual TDD values. 
    more » « less
  2. Room-temperature, pulsed-operation lasing of 8.5  μm-emitting InP-based quantum cascade lasers (QCLs), with low threshold-current density and watt-level output power, is demonstrated from structures grown on (001) GaAs substrates by metal-organic chemical vapor deposition. Prior to growing the laser structure, which contains a 35-stage In 0.53 Ga 0.47 As/In 0.52 Al 0.48 As lattice-matched active-core region, a ∼2  μm-thick nearly fully relaxed InP buffer with strained 1.6 nm-thick InAs quantum-dot-like dislocation-filter layers was grown. A smooth terminal buffer-layer surface, with roughness as low as 0.4 nm on a 10 × 10  μm 2 scale, was obtained, while the estimated threading-dislocation density was in the mid-range × 10 8  cm −2 . A series of measurements, on lasers grown on InP metamorphic buffer layers (MBLs) and on native InP substrates, were performed for understanding the impact of the buffer-layer's surface roughness, residual strain, and threading-dislocation density on unipolar devices such as QCLs. As-cleaved devices, grown on InP MBLs, were fabricated as 25  μm × 3 mm deep-etched ridge guides with lateral current injection. The results are pulsed maximum output power of 1.95 W/facet and a low threshold-current density of 1.86 kA/cm 2 at 293 K. These values are comparable to those obtained from devices grown on InP: 2.09 W/facet and 2.42 kA/cm 2 . This demonstrates the relative insensitivity of the device-performance metrics on high residual threading-dislocation density, and high-performance InP-based QCLs emitting near 8  μm can be achieved on lattice-mismatched substrates. 
    more » « less
  3.  
    more » « less
  4.  
    more » « less
  5. Abstract

    Electrically pumped lasing from hybrid organic–inorganic metal‐halide perovskite semiconductors could lead to nonepitaxial diode lasers that are tunable throughout the visible and near‐infrared spectrum; however, a viable laser diode architecture has not been demonstrated to date. Here, an important step toward this goal is achieved by demonstrating two distinct distributed feedback light‐emitting diode architectures that achieve low threshold, optically pumped lasing. Bottom‐ and top‐emitting perovskite light‐emitting diodes are fabricated on glass and Si substrates, respectively, using a polydimethylsiloxane stamp in the latter case to nanoimprint a second‐order distributed feedback grating directly into the methylammonium lead iodide active layer. The devices exhibit room temperature thresholds as low as ≈6 µJ cm−2, a peak external quantum efficiency of ≈0.1%, and a maximum current density of ≈2 A cm−2that is presently limited by degradation associated with excessive leakage current. In this low current regime, electrical injection does not adversely affect the optical pump threshold, leading to a projected threshold current density of ≈2 kA cm−2. Operation at low temperature can significantly decrease this threshold, but must overcome extrinsic carrier freeze‐out in the doped organic transport layers to maintain a reasonable drive voltage.

     
    more » « less