Abstract Rapid retreat of the Larsen A and B ice shelves has provided important clues about the ice shelf destabilization processes. The Larsen C Ice Shelf, the largest remaining ice shelf on the Antarctic Peninsula, may also be vulnerable to future collapse in a warming climate. Here, we utilize multisource satellite images collected over 1963–2020 to derive multidecadal time series of ice front, flow velocities, and critical rift features over Larsen C, with the aim of understanding the controls on its retreat. We complement these observations with modeling experiments using the Ice‐sheet and Sea‐level System Model to examine how front geometry conditions and mechanical weakening due to rifts affect ice shelf dynamics. Over the past six decades, Larsen C lost over 20% of its area, dominated by rift‐induced tabular iceberg calving. The Bawden Ice Rise and Gipps Ice Rise are critical areas for rift formation, through their impact on the longitudinal deviatoric stress field. Mechanical weakening around Gipps Ice Rise is found to be an important control on localized flow acceleration and the propagation of two rifts that caused a major calving event in 2017. Capturing the time‐varying effects of rifts on ice rigidity in ice shelf models is essential for making realistic predictions of ice shelf flow dynamics and instability. In the context of the Larsen A and Larsen B collapses, we infer a chronology of destabilization processes for embayment‐confined ice shelves, which provides a useful framework for understanding the historical and future destabilization of Antarctic ice shelves.
more »
« less
Tidal and Thermal Stresses Drive Seismicity Along a Major Ross Ice Shelf Rift
Abstract Understanding deformation in ice shelves is necessary to evaluate the response of ice shelves to thinning. We study microseismicity associated with ice shelf deformation using nine broadband seismographs deployed near a rift on the Ross Ice Shelf. From December 2014 to November 2016, we detect 5,948 icequakes generated by rift deformation. Locations were determined for 2,515 events using a least squares grid‐search and double‐difference algorithms. Ocean swell, infragravity waves, and a significant tsunami arrival do not affect seismicity. Instead, seismicity correlates with tidal phase on diurnal time scales and inversely correlates with air temperature on multiday and seasonal time scales. Spatial variability in tidal elevation tilts the ice shelf, and seismicity is concentrated while the shelf slopes downward toward the ice front. During especially cold periods, thermal stress and embrittlement enhance fracture along the rift. We propose that thermal stress and tidally driven gravitational stress produce rift seismicity with peak activity in the winter.
more »
« less
- PAR ID:
- 10453543
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 46
- Issue:
- 12
- ISSN:
- 0094-8276
- Page Range / eLocation ID:
- p. 6644-6652
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Fractures within ice shelves are zones of weakness, which can deform on timescales from seconds to decades. Icequakes produced during the fracturing process show a higherb‐valuein the Gutenberg‐Richter scaling relationship than continental earthquakes. We investigate icequakes on the east side of rift WR4 in the Ross Ice Shelf, Antarctica. Our model suggests a maximum icequake slip depth that is ∼7.8 m below the rift mélange, where the slip area can only grow laterally along the fracture planes. We propose ductile deformation below this depth, potentially due to the saturation of unfrozen water. We use remote sensing and geodetic tools to quantify surface movement on different timescales and find that the majority of icequakes occur during falling tides. The total seismic moment is <1% of the estimated geodetic moment during a tidal cycle. This study demonstrates the feasibility of using seismology and geodesy to investigate ice rift zone rheology.more » « less
-
Abstract Basal crevasses threaten the stability of ice shelves through the potential to form rifts and calve icebergs. Furthermore, it is important to determine the dependence of crevasse stability on temperature due to large vertical temperature variations on ice shelves. In this work, considering the vertical temperature profile through ice viscosity, we compare (1) the theoretical crack depths and (2) the threshold stress causing the transition from basal crevasses to full thickness fractures in several fracture theories. In the Zero Stress approximation, the depth-integrated force at the crevassed and non-crevassed location are unbalanced, violating the volume-integrated Stokes equation. By incorporating a Horizontal Force Balance (HFB) argument, recent work showed analytically that the threshold stress for rift initiation is only half of that predicted by the Zero Stress approximation. We generalize the HFB theory to show that while the temperature profile influences crack depths, the threshold rifting stress is insensitive to temperature. We compare with observations and find that HFB best matches observed rifts. Using HFB instead of Zero Stress for cracks in an ice-sheet model would substantially enlarge the predicted fracture depth, reduce the threshold rifting stress and potentially increase the projected rate of ice shelf mass loss.more » « less
-
The Antarctic ice sheet is buttressed by floating ice shelves that calve icebergs along large fractures called rifts. Despite the significant influence exerted by rifting on ice shelf geometry and buttressing, the scarcity of in situ observations of rift propagation contributes considerable uncertainty to understanding rift dynamics. Here, we report the first‐ever seismic recording of a multiple‐kilometer rift propagation event. Remote sensing and seismic recordings reveal that a rift in the Pine Island Glacier Ice Shelf extended 10.53 km at a speed of 35.1 m/s, the fastest known ice fracture at this scale. We simulate ocean‐coupled rift propagation and find that the dynamics of water flow within the rift limit the propagation rate, resulting in rupture two orders of magnitude slower than typically predicted for brittle fracture. Using seismic recordings of the elastic waves generated during rift propagation, we estimate that ocean water flows into the rift at a rate of at least 2,300 cubic meters during rift propagation and causes mixing in the subshelf cavity. Our observations support the hypotheses that large ice shelf rift propagation events are brittle, hydrodynamically limited, and exhibit sensitive coupling with the surrounding ocean.more » « less
-
Abstract Increasing surface melt has been implicated in the collapse of several Antarctic ice shelves over the last few decades, including the collapse of Larsen B Ice Shelf over a period of just a few weeks in 2002. The speed at which an ice shelf disintegrates strongly determines the subsequent loss of grounded ice and sea level rise, but the controls on collapse speed are not well understood. Here we show, using a novel cellular automaton model, that there is an intrinsic speed limit on ice shelf collapse through cascades of interacting melt pond hydrofracture events. Though collapse speed increases with the area of hydrofracture influence, the typical flexural length scales of Antarctic ice shelves ensure that hydrofracture interactions remain localized. We argue that the speed at which Larsen B Ice Shelf collapsed was caused by a season of anomalously high surface meltwater production.more » « less
An official website of the United States government
