Underrepresentation of female students and specific racial/ethnic groups persists in STEM despite decades of intervention. Evidence suggests a need to encourage interest in STEM fields at the middle-school level. Adolescent career aspirations are influenced by exposure to role models and mindsets, such as a sense of perceived personal capacity. The purpose of this study was to measure how exposure to role models and work-based microbadging affects students’ mindsets related to pursuit of STEM careers. Middle school students rated their intent to pursue a STEM career before and after completing a series of Quest-Challenge pairs featuring role models, including a biomedical engineer, in the Couragion application, along with their confidence, motivation, and enjoyment through in-app surveys. Data from students in well-represented and underrepresented STEM demographics were compared. Intent to pursue a STEM career increased after Couragion app intervention. Divided into demographic groups, increases were observed in students from underrepresented racial/ethnic groups and female students. Students reported increased confidence, motivation, and enjoyment after interacting with the app. Additionally, students reported confidence in STEM career success and motivation to apply themselves academically. This study showed increased intent, confidence, motivation, and enjoyment in middle school students related to STEM careers. The Couragion app intervention effectively improved metrics that inform students’ future academic and professional decisions. Widely implementing this type of intervention during middle school could help narrow the representation gap in STEM fields.
more »
« less
Religion, Family, and Career among Graduate Students in the Sciences
Abstract Concerns about family life push some students away from a career in science or lead them away from particular career paths within science. Religion has been shown to have an influence on individuals’ values concerning both family and work. This study uses data from a survey of U.S. graduate students in five science disciplines to estimate a structural equation model examining paths between religiosity, work and family values, and intent to pursue different careers within science. The analysis finds that religiosity is positively associated with the importance placed on family and, through this mediator, is associated with a lower intent to pursue research‐focused academic jobs and higher intent to pursue teaching‐focused academic jobs. We discuss the implications of these findings, particularly as the analysis shows that women and some racial and ethnic minority students are more religious than their male and white peers.
more »
« less
- Award ID(s):
- 1749130
- PAR ID:
- 10453585
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal for the Scientific Study of Religion
- Volume:
- 60
- Issue:
- 1
- ISSN:
- 0021-8294
- Page Range / eLocation ID:
- p. 131-146
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Science, Technology, Engineering, and Mathematics (STEM) graduate education traditionally has focused on developing technical and research skills needed to be successful in academic and research settings. In the past decade, however, STEM graduate students increasingly have sought positions in the industry [1]; a recent study by Sherman et al. [2] found that non-academic industry jobs were the most preferred career choice for STEM doctoral students. Despite this preference, graduate education has yet to adapt to better prepare students for their industry positions; a significant portion of students need critical professional skills, such as project management (PM), needed to be effective leaders in these non-academic environments [3-9]. Although a required skill in the industry, these professional skills also can significantly enhance future careers within research and the academy.more » « less
-
There is an urgent need for young people to prepare for and pursue engineering careers. Engineering occupations comprise 20% of the science, technology, engineering, and math (STEM) jobs in the U.S. (Bureau of Labor Statistics, 2017). The average wage for STEM occupations is nearly double that of non-STEM occupations, with engineers commanding some of the highest salaries in STEM (Bureau of Labor Statistics, 2017). Moreover, engineering occupations are expected to be some of the fastest growing occupations in the U.S. over the next 10 years (Occupational Outlook Handbook, 2018); yet, there are current and projected shortages of workers in the engineering workforce so that many engineering jobs will go unfilled (Bureau of Labor Statistics, 2015) Native Americans are highly underrepresented in engineering (NSF, 2017). They comprise approximately 2% of the U.S. population (U.S. Census Bureau, 2013), but only 0.3% of engineers (Sandia National Laboratories, 2016). Thus, they are not positioned to attain a high-demand, high-growth, highly rewarding engineering job, nor to provide engineering expertise to meet the needs of their own communities or society at large. The purpose of this study was to examine factors that encourage or discourage Native American college students’ entry into engineering. Using Social Cognitive Career Theory (SCCT; Lent, Brown, & Hackett, 1994; 2000), we examined the correlates of these students’ interests and efficacy in engineering to accomplish this goal. Participants were N = 30 Native American engineering college students from the Midwest; 65% men, 30% women, and 4% other. The mean age was 25.87 (SD = 6.98). Data were collected over the period of one year on college campuses and at professional development conferences via an online survey hosted on Qualtrics. Three scales were used in the study: Mapping Vocational Challenges – Engineering (Lapan & Turner, 2000, 2016), the Perceptions of Barriers Scale (POB; McWhirter, 1998), and the Structured Career Development Inventory (Lapan & Turner, 2004). An a priori Power Analysis (f2 = .50; α = .05, 1 – β = .90) indicated our sample size was adequate. For all scales, full-scale Cronbach’s α reliabilities ranged from .82 to .86. Results of correlation analyses indicated that engineering efficacy was negatively related to lack of academic preparation (r = -.50, p = .016), and perceived lack of ability (r = -.53, p = .009), and positively related to academic achievement (r = .43, p = .043), career exploration (r = .47, p = .022), and approaching engineering studies proactively (r = .53, p = .009). Engineering interests were negatively related to perceived lack of ability (r = -.55, p = .007), and positively to proactivity (r = .42, p = .044), and academic achievement (r = .45, p = .033). Engineering interests were also related to support from parents, teachers, and friends to study engineering and pursue an engineering career. There was no significant relationship between engineering interests and engineering efficacy among these students. The relevance of these results will be discussed in light of SCCT, and recommendations for practice will be included.more » « less
-
Historically, women and racial minorities have been underrepresented among the STEM (science, technology, engineering, and mathematics) workforce. Previous research has identified several factors that contribute to the persistence of minority populations within STEM fields, while other work has identified potential barriers that have influenced these disparities [1-9]. The current study sampled undergraduate students (n=222) from a Hispanic Serving Institute (HSI) in West Texas. Participants were given a survey that explored factors including level of perceived support from family members and friends, level of motivation to pursue a STEM career, and student experiences at the university. Variables of interest focused on sex, ethnicity, and STEM major status. Results and implications are discussed in the following manuscript.more » « less
-
Science, Technology & Society (STS) graduate programs primarily train graduate students to work in tenure track academic jobs. However, there are not enough tenure track academic jobs to match the supply of STS graduate students, nor does every STS graduate student want to become an academic. As a start to addressing these challenges, we hosted workshops before the 2017 Society for the Annual Meeting of the Society Studies of Science and the 2018 ST Global conference. In those workshops, panelists with PhDs in STS and related fields and working in non-academic faculty careers such as government agencies, non-profit foundations, and industry emphasized that students must showcase how their skills are useful to non-academic organizations. The panelists offered a wealth of stories on how their STS perspective supported their careers, yet most had faced implicit and explicit mentoring from STS faculty that ran counter to their career aspirations. The conversations centered on reframing research and conveying to potential employers how their STS training would support their future careers. A takeaway point that resonated with many participants was the need for STS graduate programs to rethink how they market themselves, recruit students, and critically reflect upon the measures of success. By implicitly steering graduate students solely towards an academic career, STS graduate training will miss an opportunity to make a positive impact on societymore » « less
An official website of the United States government
