skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Negative trait‐based association between abundance of nitrogen‐fixing trees and long‐term tropical forest biomass accumulation
Abstract Plant functional traits are thought to drive biomass production and biogeochemical cycling in tropical forests, but it remains unclear how nitrogen (N)‐fixing legumes influence the functional traits of neighbouring trees and forest‐wide biomass dynamics. Further, the degree to which effects of N‐fixers are density‐dependent and may depend on stem size and spatial scale remains largely unknown.Here, we examine 30 years of stem demography data for ~20,000 trees in a lowland tropical forest in Trinidad that span a wide range of functional traits thought to drive above‐ground biomass (AGB) dynamics.These forests show positive but decreasing long‐term net AGB accumulation resulting from constant average productivity but increasing mortality of non‐fixing trees over time. We find that high abundance of N‐fixing trees is associated with compositional shifts in non‐fixer functional traits that confer lower competitive performance and biomass accumulation. Across tree size classes, most interactions between N‐fixers and non‐fixers were negative, density‐dependent, and strongest at smaller spatial scales.Synthesis. Overall, our findings suggest that local trait‐based interactions between N‐fixing and non‐fixing trees can influence long‐term carbon accumulation in tropical forests.  more » « less
Award ID(s):
1632810
PAR ID:
10453586
Author(s) / Creator(s):
 ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Ecology
Volume:
109
Issue:
2
ISSN:
0022-0477
Page Range / eLocation ID:
p. 966-974
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Understanding the mechanisms that promote the coexistence of hundreds of species over small areas in tropical forest remains a challenge. Many tropical tree species are presumed to be functionally equivalent shade tolerant species but exist on a continuum of performance trade‐offs between survival in shade and the ability to quickly grow in sunlight. These trade‐offs can promote coexistence by reducing fitness differences.Variation in plant functional traits related to resource acquisition is thought to predict variation in performance among species, perhaps explaining community assembly across habitats with gradients in resource availability. Many studies have found low predictive power, however, when linking trait measurements to species demographic rates.Seedlings face different challenges recruiting on the forest floor and may exhibit different traits and/or performance trade‐offs than older individuals face in the eventual adult niche. Seed mass is the typical proxy for seedling success, but species also differ in cotyledon strategy (reserve vs. photosynthetic) or other leaf, stem and root traits. These can cause species with the same average seed mass to have divergent performance in the same habitat.We combined long‐term studies of seedling dynamics with functional trait data collected at a standard life‐history stage in three diverse neotropical forests to ask whether variation in coordinated suites of traits predicts variation among species in demographic performance.Across hundreds of species in Ecuador, Panama and Puerto Rico, we found seedlings displayed correlated suites of leaf, stem, and root traits, which strongly correlated with seed mass and cotyledon strategy. Variation among species in seedling functional traits, seed mass, and cotyledon strategy were strong predictors of trade‐offs in seedling growth and survival. These results underscore the importance of matching the ontogenetic stage of the trait measurement to the stage of demographic dynamics.Our findings highlight the importance of cotyledon strategy in addition to seed mass as a key component of seed and seedling biology in tropical forests because of the contribution of carbon reserves in storage cotyledons to reducing mortality rates and explaining the growth‐survival trade‐off among species.Synthesis: With strikingly consistent patterns across three tropical forests, we find strong evidence for the promise of functional traits to provide mechanistic links between seedling form and demographic performance. 
    more » « less
  2. The interspecific trade‐off between growth versus mortality rates of tree species is thought to be driven by functional biology and to contribute to species ecological niche differentiation. Yet, functional trait variation is often not strongly correlated with growth and mortality, and few studies have investigated the relationships of both traits and niches, specifically encompassing above and belowground resources, to the trade‐off itself. These relationships are particularly relevant for seedlings, which must often survive resource limitation to reach larger size classes.We investigated the functional basis of the interspecific growth–mortality trade‐off and its relationship with ecological niches for seedlings of 14 tree species in a tropical forest in southwest China.We found evidence for an interspecific growth–mortality trade‐off at the seedling stage using 15 functional traits and 15 ecological niche variables. None of the organ‐level traits correlated with growth, mortality, nor the trade‐off, whereas specific stem length (SSL), a biomass allocation trait, was the only trait to have a significant correlation (positive). Moreover, light‐defined niches were not correlated with growth, mortality or the trade‐off, but soil‐defined niches did. Species at the faster growth/higher mortality end of the trade‐off were associated with higher fertility defined by lower soil bulk density and slope, and higher soil organic matter concentration and soil total nitrogen.Our findings indicate the importance of stem elongation and soil fertility for growth, mortality and their trade‐off at the seedling stage in this Asian tropical forest. Our findings contrast with analogous studies in neotropical forests showing the importance of photosynthesis‐related leaf traits related to insolation. Therefore, the functional drivers of demographic rates and trade‐offs, as well as their consequences for ecological niches, can vary among forests, likely owing to differences in biogeography, canopy disturbance rates, topography and soil properties. Moreover, the effects of functional trait variation on demographic rates and trade‐offs may be better revealed when biomass allocation is accounted for in a whole‐plant context. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  3. Abstract Topography affects abiotic conditions which can influence the structure, function and dynamics of ecological communities. An increasing number of studies have demonstrated biological consequences of fine‐scale topographic heterogeneity but we have a limited understanding of how these effects depend on the climate context.We merged high‐resolution (1 m2) data on topography and canopy height derived from airborne lidar with ground‐based data from 15 forest plots in Puerto Rico distributed along a precipitation gradient spanningc. 800–3,500 mm/year. Ground‐based data included species composition, estimated above‐ground biomass (AGB), and two key functional traits (wood density and leaf mass per area, LMA) that reflect resource‐use strategies and a trade‐off between hydraulic safety and hydraulic efficiency. We used hierarchical Bayesian models to evaluate how the interaction between topography × climate is related to metrics of forest structure (i.e. canopy height and AGB), as well as taxonomic and functional alpha‐ and beta‐diversity.Fine‐scale topography (characterized with the topographic wetness index, TWI) significantly affected forest structure and the strength (and in some cases direction) of these effects varied across the precipitation gradient. In all plots, canopy height increased with topographic wetness but the effect was much stronger in dry compared to wet forest plots. In dry forest plots, topographically wetter microsites also had higher levels of AGB but in wet forest plots, topographically drier microsites had higher AGB.Fine‐scale topography influenced functional composition but had only weak or non‐significant effects on taxonomic and functional alpha‐ and beta‐diversity. For instance, community‐weighted wood density followed a similar pattern to AGB across plots. We also found a marginally significant association between variation of wood density and topographic heterogeneity that depended on climate context.Synthesis. The effects of fine‐scale topographic heterogeneity on tropical forest structure and composition depend on the climate context. Our study demonstrates how a stronger integration of topographic heterogeneity across precipitation gradients could improve estimates of forest structure and biomass, and may provide insight to the ways that topography might mediate species responses to drought and climate change. 
    more » « less
  4. Abstract Landslides are common natural disturbances in tropical montane forests. While the geomorphic drivers of landslides in the Andes have been studied, factors controlling post‐landslide forest recovery across the steep climatic and topographic gradients characteristic of tropical mountains are poorly understood.Here we use a LiDAR‐derived canopy height map coupled with a 25‐year landslide time‐series map to examine how landslide, topographic and biophysical factors, along with residual vegetation, affect canopy height and heterogeneity in regenerating landslides. We also calculate above‐ground biomass accumulation rates and estimate the time for landslides to recover to mature forest biomass levels.We find that age and elevation are the biggest determinants of forest recovery, and that the jump‐start in regeneration that residual vegetation provides lasts for at least 18 years. Our estimates of time to biomass recovery (31.6–37.1 years) are surprisingly rapid, and as a result we recommend that future research pair LiDAR with hyperspectral imagery to estimate forest above‐ground biomass in frequently disturbed landscapes.Synthesis. Using a high‐resolution LiDAR dataset and a time‐series inventory of 608 landslides distributed across a wide elevational gradient in Andean montane forest, we show that age and elevation are the most influential predictors of forest canopy height and canopy variability. Other features of landslides, in particular the presence of residual vegetation, shape post‐landslide regeneration trajectories. LiDAR allows for a detailed analysis of forest structural recovery across large landscapes and numbers of disturbances, and provides a reasonable upper bound on above‐ground biomass accumulation rates. However, because this method does not capture the effect of compositional change through succession on above‐ground biomass, wherein high‐wood density species gradually replace light‐wooded pioneer species, it overestimates above‐ground biomass. Given previously estimated stem turnover rates along this elevational gradient, we posit that above‐ground biomass recovery takes at least three times as long as our recovery time estimates based on LiDAR‐derived structure alone. 
    more » « less
  5. Abstract Tree death due to lightning influences tropical forest carbon cycling and tree community dynamics. However, the distribution of lightning damage among trees in forests remains poorly understood.We developed models to predict direct and secondary lightning damage to trees based on tree size, crown exposure and local forest structure. We parameterized these models using data on the locations of lightning strikes and censuses of tree damage in strike zones, combined with drone‐based maps of tree crowns and censuses of all trees within a 50‐ha forest dynamics plot on Barro Colorado Island, Panama.The likelihood of a direct strike to a tree increased with larger exposed crown area and higher relative canopy position (emergent > canopy >>> subcanopy), whereas the likelihood of secondary lightning damage increased with tree diameter and proximity to neighbouring trees. The predicted frequency of lightning damage in this mature forest was greater for tree species with larger average diameters.These patterns suggest that lightning influences forest structure and the global carbon budget by non‐randomly damaging large trees. Moreover, these models provide a framework for investigating the ecological and evolutionary consequences of lightning disturbance in tropical forests.Synthesis. Our findings indicate that the distribution of lightning damage is stochastic at large spatial grain and relatively deterministic at smaller spatial grain (<15 m). Lightning is more likely to directly strike taller trees with large crowns and secondarily damage large neighbouring trees that are closest to the directly struck tree. The results provide a framework for understanding how lightning can affect forest structure, forest dynamics and carbon cycling. The resulting lightning risk model will facilitate informed investigations into the effects of lightning in tropical forests. 
    more » « less