skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A nucleation framework for transition between alternate states: short‐circuiting barriers to ecosystem recovery
Abstract The theory of alternate stable states provides an explanation for rapid ecosystem degradation, yielding important implications for ecosystem conservation and restoration. However, utilizing this theory to initiate transitions from degraded to desired ecosystem states remains a significant challenge. Applications of the alternative stable states framework may currently be impeded by a mismatch between local‐scale driving processes and landscape‐scale emergent system transitions. We show how nucleation theory provides an elegant bridge between local‐scale positive feedback mechanisms and landscape‐scale transitions between alternate stable ecosystem states. Geometrical principles can be used to derive a critical patch radius: a spatially explicit, local description of an unstable equilibrium point. This insight can be used to derive an optimal patch size that minimizes the cost of restoration, and to provide a framework to measure the resilience of desired ecosystem states to the synergistic effects of disturbance and environmental change.  more » « less
Award ID(s):
1738041 1656006
PAR ID:
10453604
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
101
Issue:
9
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Meeting restoration targets may require active strategies to accelerate natural regeneration rates or overcome the resilience associated with degraded ecosystem states. Introducing desired ecosystem patches in degraded landscapes constitutes a promising active restoration strategy, with various mechanisms potentially causing these patches to become foci from which desired species can re‐establish throughout the landscape. This study considers three mechanisms previously identified as potential drivers of introduced patch dynamics: autocatalytic nucleation, directed dispersal, and resource concentration. These mechanisms reflect qualitatively different positive feedbacks. We developed an ecological model framework that compared how the occurrence of each mechanism was reflected in spatio‐temporal patch dynamics. We then analyzed the implications of these relationships for optimal restoration design. We found that patch expansion accelerated over time when driven by the autocatalytic nucleation mechanism, while patch expansion driven by the directed dispersal or resource concentration mechanisms decelerated over time. Additionally, when driven by autocatalytic nucleation, patch expansion was independent of patch position in the landscape. However, the proximity of other patches affected patch expansion either positively or negatively when driven by directed dispersal or resource concentration. For autocatalytic nucleation, introducing many small patches was a favorable strategy, provided that each individual patch exceeded a critical patch size. Introducing a single patch or a few large patches was the most effective restoration strategy to initiate the directed dispersal mechanism. Introducing many small patches was the most effective strategy for reaching restored ecosystem states driven by a resource concentration mechanism. Our model results suggest that introducing desirable patches can substantially accelerate ecosystem restoration, or even induce a critical transition from an otherwise stable degraded state toward a desired ecosystem state. However, the potential of this type of restoration strategy for a particular ecosystem may strongly depend on the mechanism driving patch dynamics. In turn, which mechanism drives patch dynamics may affect the optimal spatial design of an active restoration strategy. Each of the three mechanisms considered reflects distinct spatio‐temporal patch dynamics, providing novel opportunities for empirically identifying key mechanisms, and restoration designs that introduce desired patches in degraded landscapes according to these patch dynamics. 
    more » « less
  2. Choosing restoration strategies may depend on ecosystem's stability properties. When degraded ecosystems do not self‐perpetuate, natural regeneration can lead to system recovery, and restoration interventions are often designed to accelerate the natural regeneration process. However, when degraded systems self‐perpetuate, reestablishing functional ecosystems depends on overcoming resistance thresholds that impede recovery. In both scenarios, concentrating restoration efforts in patches of the desired state may enhance ecosystem recovery. Introducing patches of a desired state has been motivated by two frameworks: autocatalytic nucleation and the analogy to nucleation. When restoration depends on overcoming resistance thresholds, autocatalytic nucleation lowers restoration barriers by initiating a local positive feedback mechanism that is only successful when desired patches are introduced above a critical patch size. In contrast, the analogy to nucleation accelerates natural regeneration whereby desired patches interact with landscape scale factors often through directed dispersal. We compare nucleation frameworks, and discuss their applications for restoration practices. 
    more » « less
  3. Abstract Emergent marsh and open water have been identified as alternate stable states in tidal marshes with large, relative differences in hydrogeomorphic conditions. In the Florida coastal Everglades, concern has been raised regarding the loss of non-tidal, coastal peat marsh via dieback of emergent vegetation and peat collapse. To aid in the identification of alternate stable states, our objective was to characterize the variability of hydrogeomorphic and biologic conditions using a field survey and long-term monitoring of hydrologic and geomorphic conditions across a range of vegetated (emergent, submerged) and unvegetated (open water) communities, which we refer to as “ecosystem states,” in a non-tidal, brackish peat marsh of the coastal Everglades. Results show (1) linear relationships among field-surveyed geomorphic, hydrologic, and biologic variables, with a 35-cm mean difference in soil surface elevation between emergent and open water states, (2) an overall decline in soil elevation in the submerged state that was related to cumulative dry days, and (3) a 2× increase in porewater salinity during the dry season in the emergent state that was also related to the number of dry days. Coupled with findings from previous experiments, we propose a conceptual model that describes how seasonal hydrologic variability may lead to ecosystem state transitions between emergent and open water alternate states. Since vegetative states are only moderately salt tolerant, as sea-level rise pushes the saltwater front inland, the importance of continued progress on Everglades restoration projects, with an aim to increase the volume of freshwater being delivered to coastal wetlands, is the primary management intervention available to mitigate salinization and slow ecosystem state shifts in non-tidal, brackish peat marshes. 
    more » « less
  4. Abstract Changes in environmental or system parameters often drive major biological transitions, including ecosystem collapse, disease outbreaks, and tumor development. Analyzing the stability of steady states in dynamical systems provides critical insight into these transitions. This paper introduces an algebraic framework for analyzing the stability landscapes of ecological models defined by systems of first-order autonomous ordinary differential equations with polynomial or rational rate functions. Using tools from real algebraic geometry, we characterize parameter regions associated with steady-state feasibility and stability via three key boundaries: singular, stability (Routh-Hurwitz), and coordinate boundaries. With these boundaries in mind, we employ routing functions to compute the connected components of parameter space in which the number and type of stable steady states remain constant, revealing the stability landscape of these ecological models. As case studies, we revisit the classical Levins-Culver competition-colonization model and a recent model of coral-bacteria symbioses. In the latter, our method uncovers complex stability regimes, including regions supporting limit cycles, that are inaccessible via traditional techniques. These results demonstrate the potential of our approach to inform ecological theory and intervention strategies in systems with nonlinear interactions and multiple stable states. 
    more » « less
  5. Abstract Many systems may switch to an undesired state due to internal failures or external perturbations, of which critical transitions toward degraded ecosystem states are prominent examples. Resilience restoration focuses on the ability of spatially-extended systems and the required time to recover to their desired states under stochastic environmental conditions. The difficulty is rooted in the lack of mathematical tools to analyze systems with high dimensionality, nonlinearity, and stochastic effects. Here we show that nucleation theory can be employed to advance resilience restoration in spatially-embedded ecological systems. We find that systems may exhibit single-cluster or multi-cluster phases depending on their sizes and noise strengths. We also discover a scaling law governing the restoration time for arbitrary system sizes and noise strengths in two-dimensional systems. This approach is not limited to ecosystems and has applications in various dynamical systems, from biology to infrastructural systems. 
    more » « less