We develop a theory of fluid--structure interaction (FSI) between an oscillatory Newtonian fluid flow and a compliant conduit. We consider the canonical geometries of a 2D channel with a deformable top wall and an axisymmetric deformable tube. Focusing on the hydrodynamics, we employ a linear relationship between wall displacement and hydrodynamic pressure, which has been shown to be suitable for a leading-order-in-slenderness theory. The slenderness assumption also allows the use of lubrication theory, and the flow rate is related to the pressure gradient (and the tube/wall deformation) via the classical solutions for oscillatory flow in a channel and in a tube (attributed to Womersley). Then, by two-way coupling the oscillatory flow and the wall deformation via the continuity equation, a one-dimensional nonlinear partial differential equation (PDE) governing the instantaneous pressure distribution along the conduit is obtained, without \textit{a priori} assumptions on the magnitude of the oscillation frequency (\textit{i.e.}, at arbitrary Womersley number). We find that the cycle-averaged pressure (for harmonic pressure-controlled conditions) deviates from the expected steady pressure distribution, suggesting the presence of a streaming flow. An analytical perturbative solution for a weakly deformable conduit is obtained to rationalize how FSI induces such streaming. In the case of a compliant tube, the results obtained from the proposed reduced-order PDE and its perturbative solutions are validated against three-dimensional, two-way-coupled direct numerical simulations. We find good agreement between theory and simulations for a range of dimensionless parameters characterizing the oscillatory flow and the FSI, demonstrating the validity of the proposed theory of oscillatory flows in compliant conduits at arbitrary Womersley number.
more »
« less
Revisiting steady viscous flow of a generalized Newtonian fluid through a slender elastic tube using shell theory
Abstract A flow vessel with an elastic wall can deform significantly due to viscous fluid flow within it, even at vanishing Reynolds number (no fluid inertia). Deformation leads to an enhancement of throughput due to the change in cross‐sectional area. The latter gives rise to a non‐constant pressure gradient in the flow‐wise direction and, hence, to a nonlinear flow rate–pressure drop relation (unlike the Hagen–Poiseuille law for a rigid tube). Many biofluids are non‐Newtonian, and are well approximated by generalized Newtonian (say, power‐law) rheological models. Consequently, we analyze the problem of steady low Reynolds number flow of a generalized Newtonian fluid through a slender elastic tube by coupling fluid lubrication theory to a structural problem posed in terms of Donnell shell theory. A perturbative approach (in the slenderness parameter) yields analytical solutions for both the flow and the deformation. Using matched asymptotics, we obtain a uniformly valid solution for the tube's radial displacement, which features both a boundary layer and a corner layer caused by localized bending near the clamped ends. In doing so, we obtain a “generalized Hagen–Poiseuille law” for soft microtubes. We benchmark the mathematical predictions against three‐dimensional two‐way coupled direct numerical simulations (DNS) of flow and deformation performed using the commercial computational engineering platform by ANSYS. The simulations show good agreement and establish the range of validity of the theory. Finally, we discuss the implications of the theory on the problem of the flow‐induced deformation of a blood vessel, which is featured in some textbooks.
more »
« less
- Award ID(s):
- 1705637
- PAR ID:
- 10453611
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
- Volume:
- 101
- Issue:
- 2
- ISSN:
- 0044-2267
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The interaction between deformable surfaces and oscillatory driving is known to produce complex secondary time-averaged flows due to inertial and elastic nonlinearities. Here, we revisit the problem of oscillatory flow in a cylindrical tube with a deformable wall, and analyse it under a long-wave theory for small deformations, but for arbitrary Womersley numbers. We find that the oscillatory pressure does not vary linearly along the length of a deformable channel, but instead decays exponentially with spatial oscillations. We show that this decay occurs over an elasto-visco-inertial length scale that depends on the material properties of the fluid and the elastic walls, the geometry of the system, and the frequency of the oscillatory flow, but is independent of the amplitude of deformation. Inertial and geometric nonlinearities associated with the elastic deformation of the channel drive a time-averaged secondary flow. We quantify the flow using numerical solutions of the perturbation theory, and gain insight by developing analytic approximations. The theory identifies a complex non-monotonic dependence of the time-averaged flux on the elastic compliance and inertia, including a reversal of the flow. Finally, we show that our analytic theory is in excellent quantitative agreement with the three-dimensional direct numerical simulations of Pandeet al.(Phys. Rev. Fluids, vol. 8, no. 12, 2023, 124102).more » « less
-
Low-inertia pulsatile flows in highly distensible viscoelastic vessels exist in many biological and engineering systems. However, many existing works focus on inertial pulsatile flows in vessels with small deformations. As such, here we study the dynamics of a viscoelastic tube at large deformation conveying low-Reynolds-number oscillatory flow using a fully coupled fluid–structure interaction computational model. We focus on a detailed study of the effect of wall (solid) viscosity and oscillation frequency on tube deformation, flow rate, phase shift and hysteresis, as well as the underlying flow physics. We find that the general behaviour is dominated by an elastic flow surge during inflation and a squeezing effect during deflation. When increasing the oscillation frequency, the maximum inlet flow rate increases and tube distention decreases, whereas increasing solid viscosity causes both to decrease. As the oscillation frequency approaches either$$0$$(quasi-steady inflation cycle) or$$\infty$$(steady flow), the behaviours of tubes with different solid viscosities converge. Our results suggest that deformation and flow rate are most affected in the intermediate range of solid viscosity and oscillation frequency. Phase shifts of deformation and flow rate with respect to the imposed pressure are analysed. We predict that the phase shifts vary throughout the oscillation; while the deformation always lags the imposed pressure, the flow rate may either lead or lag depending on the parameter values. As such, the flow rate shows hysteresis behaviour that traces either a clockwise or counterclockwise curve, or a mix of both, in the pressure–flow rate space. This directional change in hysteresis is fully characterised here in the appropriate parameter space. Furthermore, the hysteresis direction is shown to be predicted by the signs of the flow rate phase shifts at the crest and trough of the oscillation. A distinct change in the tube dynamics is also observed at high solid viscosity which leads to global or ‘whole-tube’ motion that is absent in purely elastic tubes.more » « less
-
Abstract Characterizing the elastic properties of soft materials through bulge testing relies on accurate measurement of deformation, which is experimentally challenging. To avoid measuring deformation, we propose a hydrodynamic bulge test for characterizing the material properties of thick, pre-stressed elastic sheets via their fluid–structure interaction with a steady viscous fluid flow. Specifically, the hydrodynamic bulge test relies on a pressure drop measurement across a rectangular microchannel with a deformable top wall. We develop a mathematical model using first-order shear deformation theory of plates with stretching and the lubrication approximation for the Newtonian fluid flow. Specifically, a relationship is derived between the imposed flowrate and the total pressure drop. Then, this relationship is inverted numerically to yield estimates of the Young’s modulus (given the Poisson ratio) if the pressure drop is measured (given the steady flowrate). Direct numerical simulations of two-way-coupled fluid–structure interaction are carried out in ansys to determine the cross-sectional membrane deformation and the hydrodynamic pressure distribution. Taking the simulations as “ground truth,” a hydrodynamic bulge test is performed using the simulation data to ascertain the accuracy and the validity of the proposed methodology for estimating material properties. An error propagation analysis is performed via Monte Carlo simulation to characterize the susceptibility of the hydrodynamic bulge test estimates to noise. We find that, while a hydrodynamic bulge test is less accurate in characterizing material properties, it is less susceptible to noise, in the input (measured) variable, than a hydrostatic bulge test.more » « less
-
The interplay between viscoelasticity and inertia in dilute polymer solutions at high deformation rates can result in inertioelastic instabilities. The nonlinear evolution of these instabilities generates a state of turbulence with significantly different spatiotemporal features compared to Newtonian turbulence, termed elastoinertial turbulence (EIT). We ex- plore EIT by studying the dynamics of a submerged planar jet of a dilute aqueous polymer solution injected into a quiescent tank of water using a combination of schlieren imaging and laser Doppler velocimetry (LDV). We show how fluid elasticity has a nonmonotonic effect on the jet stability depending on its magnitude, creating two distinct regimes in which elastic effects can either destabilize or stabilize the jet. In agreement with linear stability analyses of viscoelastic jets, an inertioelastic shear-layer instability emerges near the edge of the jet for small levels of elasticity, independent of bulk undulations in the fluid column. The growth of this disturbance mode destabilizes the flow, resulting in a turbulence transition at lower Reynolds numbers and closer to the nozzle compared to the conditions required for the transition to turbulence in a Newtonian jet. Increasing the fluid elasticity merges the shear-layer instability into a bulk instability of the jet column. In this regime, elastic tensile stresses generated in the shear layer act as an “elastic membrane” that partially stabilizes the flow, retarding the transition to turbulence to higher levels of inertia and greater distances from the nozzle. In the fully turbulent state far from the nozzle, planar viscoelastic jets exhibit unique spatiotemporal features associated with EIT. The time-averaged angle of jet spreading, an Eulerian measure of the degree of entrainment, and the centerline velocity of the jets both evolve self-similarly with distance from the nozzle. The autocovariance of the schlieren images in the fully turbulent region of the jets shows coherent structures that are elongated in the streamwise direction, consistent with the suppression of streamwise vortices by elastic stresses. These coherent structures give a higher spectral energy to small frequency modes in EIT characterized by LDV measurements of the velocity fluctuations at the jet centerline. Finally, our LDV measurements reveal a frequency spectrum characterized by a −3 power-law exponent, different from the well-known −5/3 power-law exponent characteristic of Newtonian turbulence.more » « less