Abstract Coastal vegetated habitats like seagrass meadows can mitigate anthropogenic carbon emissions by sequestering CO2as “blue carbon” (BC). Already, some coastal ecosystems are actively managed to enhance BC storage, with associated BC stocks included in national greenhouse gas inventories. However, the extent to which BC burial fluxes are enhanced or counteracted by other carbon fluxes, especially air‐water CO2flux (FCO2) remains poorly understood. In this study, we synthesized all available direct FCO2measurements over seagrass meadows made using atmospheric Eddy Covariance, across a globally representative range of ecotypes. Of the four sites with seasonal data coverage, two were net CO2sources, with average FCO2equivalent to 44%–115% of the global average BC burial rate. At the remaining sites, net CO2uptake was 101%–888% of average BC burial. A wavelet coherence analysis demonstrated that FCO2was most strongly related to physical factors like temperature, wind, and tides. In particular, tidal forcing was a key driver of global‐scale patterns in FCO2, likely due to a combination of lateral carbon exchange, bottom‐driven turbulence, and pore‐water pumping. Lastly, sea‐surface drag coefficients were always greater than the prediction for the open ocean, supporting a universal enhancement of gas‐transfer in shallow coastal waters. Our study points to the need for a more comprehensive approach to BC assessments, considering not only organic carbon storage, but also air‐water CO2exchange, and its complex biogeochemical and physical drivers. 
                        more » 
                        « less   
                    
                            
                            Water temperature control on CO2 flux and evaporation over a subtropical seagrass meadow revealed by atmospheric eddy covariance
                        
                    
    
            Abstract Subtropical seagrass meadows play a major role in the coastal carbon cycle, but the nature of air–water CO2exchanges over these ecosystems is still poorly understood. The complex physical forcing of air–water exchange in coastal waters challenges our ability to quantify bulk exchanges of CO2and water (evaporation), emphasizing the need for direct measurements. We describe the first direct measurements of evaporation and CO2flux over a calcifying seagrass meadow near Bob Allen Keys, Florida. Over the 78‐d study, CO2emissions were 36% greater during the day than at night, and the site was a net CO2source to the atmosphere of 0.27 ± 0.17 μmol m−2s−1(x̅ ± standard deviation). A quarter (23%) of the diurnal variability in CO2flux was caused by the effect of changing water temperature on gas solubility. Furthermore, evaporation rates were ~ 10 times greater than precipitation, causing a 14% increase in salinity, a potential precursor of seagrass die‐offs. Evaporation rates were not correlated with solar radiation, but instead with air–water temperature gradient and wind shear. We also confirm the role of convective forcing on night‐time enhancement and day‐time suppression of gas transfer. At this site, temperature trends are regulated by solar heating, combined with shallow water depth and relatively consistent air temperature. Our findings indicate that evaporation and air–water CO2exchange over shallow, tropical, and subtropical seagrass ecosystems may be fundamentally different than in submerged vegetated environments elsewhere, in part due to the complex physical forcing of coastal air–sea gas transfer. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10453617
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography
- Volume:
- 66
- Issue:
- 2
- ISSN:
- 0024-3590
- Page Range / eLocation ID:
- p. 510-527
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Seagrass meadows play an important role in “blue carbon” sequestration and storage, but their dynamic metabolism is not fully understood. In a denseZostera marinameadow, we measured benthic O2fluxes by aquatic eddy covariance, water column concentrations of O2, and partial pressures of CO2(pCO2) over 21 full days during peak growing season in April and June. Seagrass metabolism, derived from the O2flux, varied markedly between the 2 months as biomass accumulated and water temperature increased from 16°C to 28°C, triggering a twofold increase in respiration and a trophic shift of the seagrass meadow from being a carbon sink to a carbon source. Seagrass metabolism was the major driver of diurnal fluctuations in water column O2concentration and pCO2, ranging from 173 to 377 μmol L−1and 193 to 859 ppmv, respectively. This 4.5‐fold variation in pCO2was observed despite buffering by the carbonate system. Hysteresis in diurnal water column pCO2vs. O2concentration was attributed to storage of O2and CO2in seagrass tissue, air–water exchange of O2and CO2, and CO2storage in surface sediment. There was a ~ 1:1 mol‐to‐mol stoichiometric relationship between diurnal fluctuations in concentrations of O2and dissolved inorganic carbon. Our measurements showed no stimulation of photosynthesis at high CO2and low O2concentrations, even though CO2reached levels used in IPCC ocean acidification scenarios. This field study does not support the notion that seagrass meadows may be “winners” in future oceans with elevated CO2concentrations and more frequent temperature extremes.more » « less
- 
            Abstract Due to their large carbon storage capacity and ability to exchange subterranean CO2with the atmosphere, soils are key components in the carbon balance in semi‐arid ecosystems. Most studies have focused on shallow (e.g., <30 cm depth) soil CO2dynamics neglecting processes in deeper soil layers where highly CO2‐enriched air can be stored or transported through soil pores and fissures. Here, we examine the relationship among variations in subterranean CO2molar fraction, volumetric water content, soil temperature and atmospheric pressure during three years within soil profiles (0.15, 0.50, and 1.50 m depths) in two semi‐arid grasslands located in southeastern Spain. We applied a wavelet coherence analysis to study the temporal variability and temporal correlation between the CO2molar fraction and its covariates (soil temperature, soil moisture and atmospheric pressure). Our results show that CO2dynamics are strongly influenced by changes in atmospheric pressure from semidiurnal, diurnal and synoptic to monthly time‐scales for all soil depths. In contrast, only weak daily dependencies were found at the surface level (0.15 m) regarding soil temperature and volumetric water content. Atmospheric pressure changes substantially influence variations in the CO2content (with daily fluctuations of up to 2000 ppm) denoting transportation through soil layers. These results provide insights into the importance of subterranean storage and non‐diffusive gas transport that could influence soil CO2efflux rates, processes that are not considered when applying the flux‐gradient approach and, which can be especially important in ecosystems with high air permeability between the unsaturated porous media and the atmosphere.more » « less
- 
            Abstract Coastal salt marshes store large amounts of carbon but the magnitude and patterns of greenhouse gas (GHG; i.e., carbon dioxide (CO2) and methane (CH4)) fluxes are unclear. Information about GHG fluxes from these ecosystems comes from studies of sediments or at the ecosystem‐scale (eddy covariance) but fluxes from tidal creeks are unknown. We measured GHG concentrations in water, water quality, meteorological parameters, sediment CO2efflux, ecosystem‐scale GHG fluxes, and plant phenology; all at half‐hour intervals over 1 year. Manual creek GHG flux measurements were used to calculate gas transfer velocity (k) and parameterize a model of water‐to‐atmosphere GHG fluxes. The creek was a source of GHGs to the atmosphere where tidal patterns controlled diel variability. Dissolved oxygen and wind speed were negatively correlated with creek CH4efflux. Despite lacking a seasonal pattern, creek CO2efflux was correlated with drivers such as turbidity across phenological phases. Overall, nighttime creek CO2efflux (3.6 ± 0.63 μmol/m2/s) was at least 2 times higher than nighttime marsh sediment CO2efflux (1.5 ± 1.23 μmol/m2/s). Creek CH4efflux (17.5 ± 6.9 nmol/m2/s) was 4 times lower than ecosystem‐scale CH4fluxes (68.1 ± 52.3 nmol/m2/s) across the year. These results suggest that tidal creeks are potential hotspots for CO2emissions and could contribute to lateral transport of CH4to the coastal ocean due to supersaturation of CH4(>6,000 μmol/mol) in water. This study provides insights for modeling GHG efflux from tidal creeks and suggests that changes in tide stage overshadow water temperature in determining magnitudes of fluxes.more » « less
- 
            Abstract Multiple aquatic ecosystems (pond, lake, river, lagoon, and ocean) on the Arctic Coastal Plain near Utqiaġvik, Alaska, USA, were visited to determine their relative atmospheric CO2flux and how this may have changed over time. The nearshore coastal waters and large freshwater lakes were small sources of atmospheric CO2, whereas smaller waterbodies were substantial sources.pCO2was linked to dissolved organic carbon concentrations across broad spatial and temporal scales, with greater concentrations found in smaller freshwater systems (i.e., ponds and rivers). On a day‐to‐day basis, water temperatures appeared to be the strongest driver ofpCO2levels in tundra ponds, where warmer temperatures likely stimulated microbial mineralization of carbon in both aquatic and hydrologically linked terrestrial environments. Large rainfall events, which may lead to inflow of carbon‐rich groundwater into these ponds, also were associated with increased daily averagepCO2. Based on comparison to historical data, we estimate that CO2concentrations in tundra ponds have increased more than 1.8 times over the past 40 years. Quantifying CO2flux from these abundant aquatic ecosystems on the Arctic Coastal Plain and elsewhere in the high northern latitudes will likely have important implications for furthering understanding of landscape‐level and nearshore carbon dynamics in the Arctic.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
