skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: “Measures of Dissipation in Viscoelastic Media” Extended: Toward Continuous Characterization Across Very Broad Geophysical Time Scales
Abstract We develop a conceptual/quantitative framework whereby measurements of Earth's viscoelasticity may be assessed across the broad range of geophysical processes, spanning seismic wave propagation, postseismic relaxation, glacial isostatic adjustment, and mantle convection. Doing so requires overcoming three challenges: (A) separating spatial variations from intrinsic frequency dependence in mechanical properties; (B) reconciling different conceptual and constitutive viscoelastic models used to interpret observations at different frequencies; and (C) improving understanding of linear and nonlinear transient deformation mechanisms and their extrapolation from laboratory to earth conditions. We focus on (B), first demonstrating how different mechanical models lead to incompatible viscosity estimates from observations. We propose the determination of the “complex viscosity”—a frequency‐dependent parameter complementary to other measures of dissipation (including frequency‐dependent moduli and attenuation)—from such observations to reveal a single underlying broadband mechanical model. The complex viscosity illuminates transient creep in the vicinity of the Maxwell time, where most ambiguity lies.  more » « less
Award ID(s):
1736165
PAR ID:
10453663
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
46
Issue:
16
ISSN:
0094-8276
Format(s):
Medium: X Size: p. 9544-9553
Size(s):
p. 9544-9553
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Contemporary crustal uplift and relative sea level (RSL) change in Greenland is caused by the response of the solid Earth to ongoing and historical ice mass change. Glacial isostatic adjustment (GIA) models, which seek to match patterns of land surface displacement and RSL change, typically employ a linear Maxwell viscoelastic model for the Earth's mantle. In Greenland, however, upper mantle viscosities inferred from ice load changes and other geophysical phenomena occurring over a range of timescales vary by up to two orders of magnitude. Here, we use full‐spectrum rheological models to examine the influence of transient deformation within the Greenland upper mantle, which may account for these differing viscosity estimates. We use observations of shear wave velocity combined with constitutive rheological models to self‐consistently calculate mechanical properties including the apparent upper mantle viscosity and lithosphere thickness across a broad spectrum of frequencies. We find that the contribution of transient behavior is most significant over loading timescales of 102–103 years, which corresponds to the timeframe of ice mass loss over recent centuries. Predicted apparent lithosphere thicknesses are also in good agreement with inferences made across seismic, GIA, and flexural timescales. Our results indicate that full‐spectrum constitutive models that more fully capture broadband mantle relaxation provide a means of reconciling seemingly contradictory estimates of Greenland's upper mantle viscosity and lithosphere thickness made from observations spanning a range of timescales. 
    more » « less
  2. null (Ed.)
    We report direct measurements of spatially resolved surface stresses of a dense suspension during large amplitude oscillatory shear (LAOS) in the discontinuous shear thickening regime using boundary stress microscopy. Consistent with previous studies, bulk rheology shows a dramatic increase in the complex viscosity above a frequency-dependent critical strain. We find that the viscosity increase is coincident with that appearance of large heterogeneous boundary stresses, indicative of the formation of transient solid-like phases (SLPs) on spatial scales large compared to the particle size. The critical strain for the appearance of SLPs is largely determined by the peak oscillatory stress, which depends on the peak shear rate and the frequency-dependent suspension viscosity. The SLPs dissipate and reform on each cycle, with a spatial pattern that is highly variable at low frequencies but remarkably persistent at the highest frequency measured ( ω = 10 rad s −1 ). 
    more » « less
  3. Abstract Cells respond to physical stimuli, such as stiffness 1 , fluid shear stress 2 and hydraulic pressure 3,4 . Extracellular fluid viscosity is a key physical cue that varies under physiological and pathological conditions, such as cancer 5 . However, its influence on cancer biology and the mechanism by which cells sense and respond to changes in viscosity are unknown. Here we demonstrate that elevated viscosity counterintuitively increases the motility of various cell types on two-dimensional surfaces and in confinement, and increases cell dissemination from three-dimensional tumour spheroids. Increased mechanical loading imposed by elevated viscosity induces an actin-related protein 2/3 (ARP2/3)-complex-dependent dense actin network, which enhances Na + /H + exchanger 1 (NHE1) polarization through its actin-binding partner ezrin. NHE1 promotes cell swelling and increased membrane tension, which, in turn, activates transient receptor potential cation vanilloid 4 (TRPV4) and mediates calcium influx, leading to increased RHOA-dependent cell contractility. The coordinated action of actin remodelling/dynamics, NHE1-mediated swelling and RHOA-based contractility facilitates enhanced motility at elevated viscosities. Breast cancer cells pre-exposed to elevated viscosity acquire TRPV4-dependent mechanical memory through transcriptional control of the Hippo pathway, leading to increased migration in zebrafish, extravasation in chick embryos and lung colonization in mice. Cumulatively, extracellular viscosity is a physical cue that regulates both short- and long-term cellular processes with pathophysiological relevance to cancer biology. 
    more » « less
  4. Abstract All instrumented basaltic caldera collapses have generated Mw > 5 very long period earthquakes. However, previous studies of source dynamics have been limited to lumped models treating the caldera block as rigid, leaving open questions related to how ruptures initiate and propagate around the ring fault, and the seismic expressions of those dynamics. We present the first 3D numerical model capturing the nucleation and propagation of ring fault rupture, the mechanical coupling to the underlying viscoelastic magma, and the associated seismic wavefield. We demonstrate that seismic radiation, neglected in previous models, acts as a damping mechanism reducing coseismic slip by up to half, with effects most pronounced for large magma chamber volume/ring fault radius or highly compliant crust/compressible magma. Viscosity of basaltic magma has negligible effect on collapse dynamics. In contrast, viscosity of silicic magma significantly reduces ring fault slip. We use the model to simulate the 2018 Kı̄lauea caldera collapse. Three stages of collapse, characterized by ring fault rupture initiation and propagation, deceleration of the downward‐moving caldera block and magma column, and post‐collapse resonant oscillations, in addition to chamber pressurization, are identified in simulated and observed (unfiltered) near‐field seismograms. A detailed comparison of simulated and observed displacement waveforms corresponding to collapse earthquakes with hypocenters at various azimuths of the ring fault reveals a complex nucleation phase for earthquakes initiated on the northwest. Our numerical simulation framework will enhance future efforts to reconcile seismic and geodetic observations of caldera collapse with conceptual models of ring fault and magma chamber dynamics. 
    more » « less
  5. Abstract Novel observation techniques (e.g., smart tracers) for characterizing coupled hydrological and biogeochemical processes are improving understanding of stream network transport and transformation dynamics. In turn, these observations are thought to enable increasingly sophisticated representations within transient storage models (TSMs). However, TSM parameter estimation is prone to issues with insensitivity and equifinality, which grow as parameters are added to model formulations. Currently, it is unclear whether (or not) observations from different tracers may lead to greater process inference and reduced parameter uncertainty in the context of TSM. Herein, we aim to unravel the role of in‐stream processes alongside metabolically active (MATS) and inactive storage zones (MITS) using variable TSM formulations. Models with one (1SZ) and two storage zones (2SZ) and with and without reactivity were applied to simulate conservative and smart tracer observations obtained experimentally for two reaches with differing morphologies. As we show, smart tracers are unsurprisingly superior to conservative tracers when it comes to partitioning MITS and MATS. However, when transient storage is lumped within a 1SZ formulation, little improvement in parameter uncertainty is gained by using a smart tracer, suggesting the addition of observations should scale with model complexity. Importantly, our work identifies several inconsistencies and open questions related to reconciling time scales of tracer observation with conceptual processes (parameters) estimated within TSM. Approaching TSM with multiple models and tracer observations may be key to gaining improved insight into transient storage simulation as well as advancing feedback loops between models and observations within hydrologic science. 
    more » « less