We examined the reactive uptake of dinitrogen pentoxide (N 2 O 5 ) to authentic biomass-burning aerosol (BBA) using a small chamber reservoir in combination with an entrained aerosol flow tube. BBA was generated from four different fuel types and the reactivity of N 2 O 5 was probed from 30 to 70% relative humidity (RH). The N 2 O 5 reactive uptake coefficient, γ (N 2 O 5 ), depended upon RH, fuel type, and to a lesser degree on aerosol chloride mass fractions. The γ (N 2 O 5 ) ranged from 2.0 (±0.4) ×10 −3 on black needlerush derived BBA at 30% RH to 6.0 (±0.6) ×10 −3 on wiregrass derived BBA at 65% RH. Major N 2 O 5 reaction products were observed including gaseous ClNO 2 and HNO 3 and particulate nitrate, and used to create a reactive nitrogen budget. Black needlerush BBA had the most particulate chloride, and the only measured ClNO 2 yield > 1%. The ClNO 2 yield on black needlerush decayed from an initial value of ∼100% to ∼30% over the course of the burn experiment, suggesting a depletion of BBA chloride over time. Black needlerush was also the only fuel for which the reactive nitrogen budget indicated other N-containing products were generated. Generally, the results suggest limited chloride availability for heterogeneous reaction for BBA in the RH range probed here, including BBA with chloride mass fractions on the higher end of previously reported values (∼17–34%). Though less than fresh sea spray aerosol, ∼50%. We use these measured quantities to discuss the implications for nocturnal aerosol nitrate formation, the chemical fate of N 2 O 5 (g), and the availability of particulate chloride for activation in biomass burning plumes. 
                        more » 
                        « less   
                    
                            
                            Observational Constraints on the Formation of Cl 2 From the Reactive Uptake of ClNO 2 on Aerosols in the Polluted Marine Boundary Layer
                        
                    
    
            Abstract We use observations from the 2015 Wintertime Investigation of Transport, Emissions, and Reactivity (WINTER) aircraft campaign to constrain the proposed mechanism of Cl2production from ClNO2reaction in acidic particles. To reproduce Cl2concentrations observed during WINTER with a chemical box model that includes ClNO2reactive uptake to form Cl2, the model required the ClNO2reaction probability, γ (ClNO2), to range from 6 × 10−6to 7 × 10−5, with a mean value of 2.3 × 10−5(±1.8 × 10−5). These field‐determined γ (ClNO2) are more than an order of magnitude lower than those determined in previous laboratory experiments on acidic surfaces, even when calculated particle pH is ≤2. We hypothesize this is because thick salt films in the laboratory enhanced the reactive uptake ClNO2compared to that which would occur in submicron aerosol particles. Using the reacto‐diffusive length‐scale framework, we show that the field and laboratory observations can be reconciled if the net aqueous‐phase reaction rate constant for ClNO2(aq) + Cl‐(aq) in acidic particles is on the order of 104s−1. We show that wet particle diameter and particulate chloride mass together explain 90% of the observed variance in the box model‐derived γ (ClNO2), implying that the availability of chloride and particle volume limit the efficiency of the reaction. Despite a much lower conversion of ClNO2into Cl2, this mechanism can still be responsible for the nocturnal formation of 10–20 pptv of Cl2in polluted regions, yielding an atmospherically relevant concentration of Cl atoms the following morning. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1822664
- PAR ID:
- 10453665
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 124
- Issue:
- 15
- ISSN:
- 2169-897X
- Page Range / eLocation ID:
- p. 8851-8869
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The reactive partitioning of cis and trans β-IEPOX was investigated on hydrated inorganic seed particles, without the addition of acids. No organic aerosol (OA) formation was observed on dry ammonium sulfate (AS); however, prompt and efficient OA growth was observed for the cis and trans β-IEPOX on AS seeds at liquid water contents of 40–75% of the total particle mass. OA formation from IEPOX is a kinetically limited process, thus the OA growth continues if there is a reservoir of gas-phase IEPOX. There appears to be no differences, within error, in the OA growth or composition attributable to the cis / trans isomeric structures. Reactive uptake of IEPOX onto hydrated AS seeds with added base (NaOH) also produced high OA loadings, suggesting the pH dependence for OA formation from IEPOX is weak for AS particles. No OA formation, after particle drying, was observed on seed particles where Na+ was substituted for NH4+. The Henry's Law partitioning of IEPOX was measured on NaCl particles (ionic strength ~9 M) to be 3 × 107 M atm−1 (−50 / +100%). A small quantity of OA was produced when NH4+ was present in the particles, but the chloride (Cl-) anion was substituted for sulfate (SO42-), possibly suggesting differences in nucleophilic strength of the anions. Online time-of-flight aerosol mass spectrometry and offline filter analysis provide evidence of oxygenated hydrocarbons, organosulfates, and amines in the particle organic composition. The results are consistent with weak correlations between IEPOX-derived OA and particle acidity or liquid water observed in field studies, as the chemical system is nucleophile-limited and not limited in water or catalyst activity.more » « less
- 
            Abstract Li2MnO3has been contemplated as a high‐capacity cathode candidate for Li‐ion batteries; however, it evolves oxygen during battery charging under ambient conditions, which hinders a reversible reaction. However, it is unclear if this irreversible process still holds under subambient conditions. Here, the low‐temperature electrochemical properties of Li2MnO3in an aqueous LiCl electrolyte are evaluated and a reversible discharge capacity of 302 mAh g−1at a potential of 1.0 V versus Ag/AgCl at −78 °C with good rate capability and stable cycling performance, in sharp contrast to the findings in a typical Li2MnO3cell cycled at room temperature, is observed. However, the results reveal that the capacity does not originate from the reversible oxygen oxidation in Li2MnO3but the reversible Cl2(l)/Cl−(aq.) redox from the electrolyte. The results demonstrate the good catalytic properties of Li2MnO3to promote the Cl2/Cl−redox at low temperatures.more » « less
- 
            Abstract We report the facile and efficient synthesis of common electrophilic haloboranes via a protonolysis reaction between Piers’ borane, HB(C6F5)2, and H−X (X=Cl, Br). This route benefits from fast reaction times, easy setup, and minimal workup to yield the analytically pure etherates, (C6F5)2BCl(OEt2) (1) and (C6F5)2BBr(OEt2) (2), as well as the ether‐free tri‐coordinate species, (C6F5)2BBr (3).more » « less
- 
            Nitrogen oxides are removed from the troposphere through the reactive uptake of N2O5into aqueous aerosol. This process is thought to occur within the bulk of an aerosol, through solvation and subsequent hydrolysis. However, this perspective is difficult to reconcile with field measurements and cannot be verified directly because of the fast reaction kinetics of N2O5. Here, we use molecular simulations, including reactive potentials and importance sampling, to study the uptake of N2O5into an aqueous aerosol. Rather than being mediated by the bulk, uptake is dominated by interfacial processes due to facile hydrolysis at the liquid-vapor interface and competitive reevaporation. With this molecular information, we propose an alternative interfacial reactive uptake model consistent with existing experimental observations.more » « less
 An official website of the United States government
An official website of the United States government 
				
			
