Glaciers are important drivers of environmental heterogeneity and biological diversity across mountain landscapes. Worldwide, glaciers are receding rapidly due to climate change, with important consequences for biodiversity in mountain ecosystems. However, the effects of glacier loss on biodiversity have never been quantified across a mountainous region, primarily due to a lack of adequate data at large spatial and temporal scales. Here, we combine high-resolution biological and glacier change (ca. 1850–2015) datasets for Glacier National Park, USA, to test the prediction that glacier retreat reduces biodiversity in mountain ecosystems through the loss of uniquely adapted meltwater stream species. We identified a specialized cold-water invertebrate community restricted to the highest elevation streams primarily below glaciers, but also snowfields and groundwater springs. We show that this community and endemic species have unexpectedly persisted in cold, high-elevation sites, even in catchments that have not been glaciated in ∼170 y. Future projections suggest substantial declines in suitable habitat, but not necessarily loss of this community with the complete disappearance of glaciers. Our findings demonstrate that high-elevation streams fed by snow and other cold-water sources continue to serve as critical climate refugia for mountain biodiversity even after glaciers disappear. 
                        more » 
                        « less   
                    
                            
                            Rock glaciers and related cold rocky landforms: Overlooked climate refugia for mountain biodiversity
                        
                    
    
            Abstract Mountains are global biodiversity hotspots where cold environments and their associated ecological communities are threatened by climate warming. Considerable research attention has been devoted to understanding the ecological effects of alpine glacier and snowfield recession. However, much less attention has been given to identifying climate refugia in mountain ecosystems where present‐day environmental conditions will be maintained, at least in the near‐term, as other habitats change. Around the world, montane communities of microbes, animals, and plants live on, adjacent to, and downstream of rock glaciers and related cold rocky landforms (CRL). These geomorphological features have been overlooked in the ecological literature despite being extremely common in mountain ranges worldwide with a propensity to support cold and stable habitats for aquatic and terrestrial biodiversity. CRLs are less responsive to atmospheric warming than alpine glaciers and snowfields due to the insulating nature and thermal inertia of their debris cover paired with their internal ventilation patterns. Thus, CRLs are likely to remain on the landscape after adjacent glaciers and snowfields have melted, thereby providing longer‐term cold habitat for biodiversity living on and downstream of them. Here, we show that CRLs will likely act as key climate refugia for terrestrial and aquatic biodiversity in mountain ecosystems, offer guidelines for incorporating CRLs into conservation practices, and identify areas for future research. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1906015
- PAR ID:
- 10453701
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Global Change Biology
- Volume:
- 27
- Issue:
- 8
- ISSN:
- 1354-1013
- Page Range / eLocation ID:
- p. 1504-1517
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Climate change is leading to shifts in not only the average timing of phenological events, but also their variance and predictability. Increasing phenological variability creates a stochastic environment that is critically understudied, particularly in aquatic ecosystems. We provide a perspective on the possible implications for increasingly unpredictable aquatic habitats, including more frequent trophic asynchronies and altered hydrologic regimes, focusing on ice-off phenology in lakes. Increasingly frequent phenological extremes may limit the ability of organisms to optimize traits required to adapt to a warming environment. Using a unique, long-term ecological dataset on Escanaba Lake, WI, USA, as a case study, we show that the average date of ice-off is shifting earlier and becoming more variable, thus altering limnological conditions and yielding uncoupled food web responses with ramifications for fish spawn timing and recruitment success. A genes-to-ecosystems understanding of the responses of aquatic communities to increasingly variable phenology is needed. Our perspective suggests that management for diversity, at the intra- and interspecific levels, will become paramount for conserving resilient aquatic ecosystems.more » « less
- 
            Abstract Tropicalization is a term used to describe the transformation of temperate ecosystems by poleward‐moving tropical organisms in response to warming temperatures. In North America, decreases in the frequency and intensity of extreme winter cold events are expected to allow the poleward range expansion of many cold‐sensitive tropical organisms, sometimes at the expense of temperate organisms. Although ecologists have long noted the critical ecological role of winter cold temperature extremes in tropical–temperate transition zones, the ecological effects of extreme cold events have been understudied, and the influence of warming winter temperatures has too often been left out of climate change vulnerability assessments. Here, we examine the influence of extreme cold events on the northward range limits of a diverse group of tropical organisms, including terrestrial plants, coastal wetland plants, coastal fishes, sea turtles, terrestrial reptiles, amphibians, manatees, and insects. For these organisms, extreme cold events can lead to major physiological damage or landscape‐scale mass mortality. Conversely, the absence of extreme cold events can foster population growth, range expansion, and ecological regime shifts. We discuss the effects of warming winters on species and ecosystems in tropical–temperate transition zones. In the 21st century, climate change‐induced decreases in the frequency and intensity of extreme cold events are expected to facilitate the poleward range expansion of many tropical species. Our review highlights critical knowledge gaps for advancing understanding of the ecological implications of the tropicalization of temperate ecosystems in North America.more » « less
- 
            Abstract As climate change continues to increase air temperature in high‐altitude ecosystems, it has become critical to understand the controls and scales of aquatic habitat vulnerability to warming. Here, we used a nested array of high‐frequency sensors, and advances in time‐series models, to examine spatiotemporal variation in thermal vulnerability in a model Sierra Nevada watershed. Stream thermal sensitivity to atmospheric warming fluctuated strongly over the year and peaked in spring and summer—when hot days threaten invertebrate communities most. The reach scale (~ 50 m) best captured variation in summer thermal regimes. Elevation, discharge, and conductivity were important correlates of summer water temperature across reaches, but upstream water temperature was the paramount driver—supporting that cascading warming occurs downstream in the network. Finally, we used our estimated summer thermal sensitivity and downscaled projections of summer air temperature to forecast end‐of‐the‐century stream warming, when extreme drought years like 2020–2021 become the norm. We found that 25.5% of cold‐water habitat may be lost under high‐emissions scenario representative concentration pathway (RCP) 8.5 (or 7.9% under mitigated RCP 4.5). This estimated reduction suggests that 27.2% of stream macroinvertebrate biodiversity (11.9% under the mitigated scenario) will be stressed or threatened in what was previously cold‐water habitat. Our quantitative approach is transferrable to other watersheds with spatially replicated time series and illustrates the importance of considering variation in the vulnerability of mountain streams to warming over both space and time. This approach may inform watershed conservation efforts by helping identify, and potentially mitigate, sites and time windows of peak vulnerability.more » « less
- 
            Abstract An issue of global concern is how climate change forcing is transmitted to ecosystems. Forest ecosystems in mountain landscapes may demonstrate buffering and perhaps decoupling of long‐term rates of temperature change, because vegetation, topography, and local winds (e.g., cold air pooling) influence temperature and potentially create microclimate refugia (areas which are relatively protected from climate change). We tested these ideas by comparing 45‐year regional rates of air temperature change to unique temporal and spatial air temperature records in the understory of regionally representative stable old forest at the H.J. Andrews Experimental Forest, Oregon, USA. The 45‐year seasonal patterns and rates of warming were similar throughout the forested landscape and matched regional rates observed at 88 standard meteorological stations in Oregon and Washington, indicating buffering, but not decoupling of long‐term climate change rates. Consideration of the energy balance explains these results: while shading and airflows produce spatial patterns of temperature, these processes do not counteract global increases in air temperature driven by increased downward, longwave radiation forced by increased anthropogenic greenhouse gases in the atmosphere. In some months, the 45‐year warming in the forest understory equaled or exceeded spatial differences of air temperature between the understory and the canopy or canopy openings and was comparable to temperature change over 1,000 m elevation, while in other months there has been little change. These findings have global implications because they indicate that microclimate refugia are transient, even in this forested mountain landscape.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
