skip to main content

Title: Specialized meltwater biodiversity persists despite widespread deglaciation
Glaciers are important drivers of environmental heterogeneity and biological diversity across mountain landscapes. Worldwide, glaciers are receding rapidly due to climate change, with important consequences for biodiversity in mountain ecosystems. However, the effects of glacier loss on biodiversity have never been quantified across a mountainous region, primarily due to a lack of adequate data at large spatial and temporal scales. Here, we combine high-resolution biological and glacier change (ca. 1850–2015) datasets for Glacier National Park, USA, to test the prediction that glacier retreat reduces biodiversity in mountain ecosystems through the loss of uniquely adapted meltwater stream species. We identified a specialized cold-water invertebrate community restricted to the highest elevation streams primarily below glaciers, but also snowfields and groundwater springs. We show that this community and endemic species have unexpectedly persisted in cold, high-elevation sites, even in catchments that have not been glaciated in ∼170 y. Future projections suggest substantial declines in suitable habitat, but not necessarily loss of this community with the complete disappearance of glaciers. Our findings demonstrate that high-elevation streams fed by snow and other cold-water sources continue to serve as critical climate refugia for mountain biodiversity even after glaciers disappear.
; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Proceedings of the National Academy of Sciences
Page Range or eLocation-ID:
12208 to 12214
Sponsoring Org:
National Science Foundation
More Like this
  1. The populations, species, and communities in high elevation mountainous regions at or above tree line are being impacted by the changing climate. Mountain systems have been recognized as both resilient and extremely threatened by climate change, requiring a more nuanced understanding of potential trajectories of the biotic communities. For high elevation systems in particular, we need to consider how the interactions among climate drivers and topography currently structure the diversity, species composition, and life-history strategies of these communities. Further, predicting biotic responses to changing climate requires knowledge of intra- and inter-specific climate associations within the context of topographically heterogenous landscapes. Changes in temperature, snow, and rain characteristics at regional scales are amplified or attenuated by slope, aspect, and wind patterns occurring at local scales that are often under a hectare or even a meter in extent. Community assemblages are structured by the soil moisture and growing season duration at these local sites, and directional climate change has the potential to alter these two drivers together, independently, or in opposition to one another due to local, intervening variables. Changes threaten species whose water and growing season duration requirements are locally extirpated or species who may be outcompeted by nearby faster-growing, warmer/driermore »adapted species. However, barring non-analogue climate conditions, species may also be able to more easily track required resource regimes in topographically heterogenous landscapes. New species arrivals composed of competitors, predators and pathogens can further mediate the direct impacts of the changing climate. Plants are moving uphill, demonstrating primary succession with the emergence of new habitats from snow and rock, but these shifts are constrained over the short term by soil limitations and microbes and ultimately by the lack of colonizable terrestrial surfaces. Meanwhile, both subalpine herbaceous and woody species pose threats to more cold-adapted species. Overall, the multiple interacting direct and indirect effects of the changing climate on high elevation systems may lead to multiple potential trajectories for these systems.« less
  2. The glaciers of the Cordillera Blanca, Peru, are rapidly retreating and thinning as a result of climate change, altering the timing, quantity and quality of water available to downstream users. Furthermore, increases in the number and size of proglacial lakes associated with these melting glaciers is increasing potential exposure to glacier lake outburst floods (GLOFs). Understanding how these glaciers are changing and their connection to proglacial lake systems is thus of critical importance. Most satellite data are too coarse for studying small mountain glaciers and are often affected by cloud cover, while traditional airborne photogrammetry and lidar are costly. Recent developments have made unmanned aerial vehicles (UAVs) a viable and potentially transformative method for studying glacier change at high spatial resolution, on demand and at relatively low cost.

    Using a custom designed hexacopter built for high-altitude (4000–6000 m a. s. l. ) operation, we completed repeat aerial surveys (2014 and 2015) of the debris-covered Llaca Glacier tongue and proglacial lake system. High-resolution orthomosaics (5 cm) and digital elevation models (DEMs) (10 cm) were produced and their accuracy assessed. Analysis of these datasets reveals highly heterogeneous patterns of glacier change. The most rapid areas of ice loss were associated with exposed ice cliffs and meltwater ponds on the glacier surface. Considerable subsidencemore »and low surface velocities were also measured on the sediments within the pro-glacial lake, indicating the presence of extensive regions of buried ice and continued connection to the glacier tongue. Only limited horizontal retreat of the glacier tongue was observed, indicating that measurements of changes in aerial extent alone are inadequate for monitoring changes in glacier ice quantity.« less
  3. Abstract Glacier retreat poses risks and benefits for species of cultural and economic importance. One example is Pacific salmon ( Oncorhynchus spp.), supporting subsistence harvests, and commercial and recreational fisheries worth billions of dollars annually. Although decreases in summer streamflow and warming freshwater is reducing salmon habitat quality in parts of their range, glacier retreat is creating new streams and lakes that salmon can colonize. However, potential gains in future salmon habitat associated with glacier loss have yet to be quantified across the range of Pacific salmon. Here we project future gains in Pacific salmon freshwater habitat by linking a model of glacier mass change for 315 glaciers, forced by five different Global Climate Models, with a simple model of salmon stream habitat potential throughout the Pacific Mountain ranges of western North America. We project that by the year 2100 glacier retreat will create 6,146 (±1,619) km of new streams accessible for colonization by Pacific salmon, of which 1,930 (±569) km have the potential to be used for spawning and juvenile rearing, representing 0 to 27% gains within the 18 sub-regions we studied. These findings can inform proactive management and conservation of Pacific salmon in this era of rapid climatemore »change.« less
  4. Climate change is expanding drylands even as land use practices degrade them. Representing ∼40% of Earth’s terrestrial surface, drylands rely on biological soil crusts (biocrusts) for key ecosystem functions including soil stability, biogeochemical cycling, and water capture. Understanding how biocrusts adapt to climate change is critical to understanding how dryland ecosystems will function with altered climate. We investigated the sensitivity of biocrusts to experimentally imposed novel climates to track changes in productivity and stability under both warming and cooling scenarios. We established three common gardens along an elevational-climate gradient on the Colorado Plateau. Mature biocrusts were collected from each site and reciprocally transplanted intact. Over 20 months we monitored visible species composition and cover, chlorophyll a, and the composition of soil bacterial communities using high throughput sequencing. We hypothesized that biocrusts replanted at their home site would show local preference, and biocrusts transplanted to novel environments would maintain higher cover and stability at elevations higher than their origin, compared to at elevations lower than their origin. We expected responses of the visible biocrust cover and soil bacterial components of the biocrust community to be coupled, with later successional taxa showing higher sensitivity to novel environments. Only high elevation sourced biocrustsmore »maintained higher biocrust cover and community stability at their site of origin. Biocrusts from all sources had higher cover and stability in the high elevation garden. Later successional taxa decreased cover in low elevation gardens, suggesting successional reversal with warming. Visible community composition was influenced by both source and transplant environment. In contrast, soil bacterial community composition was not influenced by transplant environments but retained fidelity to the source. Thus, responses of the visible and soil bacterial components of the biocrust community were not coupled. Synthesis: Our results suggest biocrust communities are sensitive to climate change, and loss of species and function can be expected, while associated soil bacteria may be buffered against rapid change.« less
  5. Himalayan glaciers supply meltwater to densely populated catchments in South Asia, and regional observations of glacier change over multiple decades are needed to understand climate drivers and assess resulting impacts on glacier-fed rivers. Here, we quantify changes in ice thickness during the intervals 1975–2000 and 2000–2016 across the Himalayas, using a set of digital elevation models derived from cold war–era spy satellite film and modern stereo satellite imagery. We observe consistent ice loss along the entire 2000-km transect for both intervals and find a doubling of the average loss rate during 2000–2016 [−0.43 ± 0.14 m w.e. year −1 (meters of water equivalent per year)] compared to 1975–2000 (−0.22 ± 0.13 m w.e. year −1 ). The similar magnitude and acceleration of ice loss across the Himalayas suggests a regionally coherent climate forcing, consistent with atmospheric warming and associated energy fluxes as the dominant drivers of glacier change.