skip to main content


Title: Understanding the Behaviors of Thermospheric Nitric Oxide Cooling During the 15 May 2005 Geomagnetic Storm
Abstract

The behaviors of thermospheric nitric oxide (NO) cooling during the 15 May 2005 intense geomagnetic storm are studied using measurements by the Sounding of the Atmosphere using Broadband Emission Radiometry instrument on board the Thermosphere‐Ionosphere‐Mesosphere Energetics and Dynamics satellite and simulations by the Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model. The geomagnetic storm was the most intense (Dst = −247 nT) of 2005 with a short and rapid main phase and long‐lasting recovery (more than 3 days). NO cooling responded globally to the geomagnetic storm within 2 hr after the onset of storm main phase. The most significant NO cooling increases occurred at middle and low latitudes in the Northern Hemisphere and at middle latitudes in the Southern Hemisphere. The model outputs agree with observations in general but overestimate the NO cooling at high latitudes and underestimate the NO cooling elsewhere. Furthermore, observations show a significant upward shifting of the NO cooling peak altitude in the storm main phase and a significant downward shifting of the NO cooling peak altitude during the storm recovery phase at low latitudes. An unusual double‐peak structure in the NO cooling rate appeared during storm main phase and recovery phase. By investigating the NO cooling vertical profiles, we suggest that the horizontal equatorward transport plays an important role in inducing these significant variations of the NO cooling peak altitude.

 
more » « less
NSF-PAR ID:
10453712
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
124
Issue:
3
ISSN:
2169-9380
Page Range / eLocation ID:
p. 2113-2126
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A thermospheric O and N2column density ratio (∑O/N2) depletion with long‐duration (>16 hr) was observed by the Global‐scale Observations of the Limb and Disk at the Atlantic longitudes (75W–20W) and middle latitudes (20N–50N) during the recovery phase of the 8 June 2019 geomagnetic storm. The National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM) simulations reproduced the ∑O/N2depletion patterns with a similar magnitude, and indicated that the composition recovery at middle latitudes began several hours after the beginning of the recovery phase of the geomagnetic storm. The TIEGCM simulations enable quantitative analysis of the physical mechanisms driving the middle‐latitude composition changes during the storm recovery phase. This analysis indicates that vertical advection and molecular diffusion dominated the initial recovery of composition perturbations at middle latitudes. Horizontal advection was also a main driver in the initial recovery of composition, but its contribution decreased rapidly. In the late recovery phase, the composition recovery was mainly determined by horizontal advection. In comparison, vertical advection and molecular diffusion played a much less important role.

     
    more » « less
  2. Abstract

    The upper boundary height of the traditional community general circulation model of the ionosphere‐thermosphere system is too low to be applied to the topside ionosphere/thermosphere study. In this study, the National Center for Atmospheric Research Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (NCAR‐TIEGCM) was successfully extended upward by four scale heights from 400–600 km to 700–1,200 km depending on solar activity, named TIEGCM‐X. The topside ionosphere and thermosphere simulated by TIEGCM‐X agree well with the observations derived from a topside sounder and satellite drag data. In addition, the neutral density, temperature, and electron density simulated by TIEGCM‐X are morphologically consistent with the NCAR‐TIEGCM simulations before extension. The latitude‐altitude distribution of the equatorial ionization anomaly derived from TIEGCM‐X is more reasonable. During geomagnetic storm events, the thermospheric responses of TIEGCM‐X are similar to NCAR‐TIEGCM. However, the ionospheric storm effects in TIEGCM‐X are stronger than those in NCAR‐TIEGCM and are even opposites at some middle and low latitudes due to the presence of more closed magnetic field lines. Defense Meteorological Satellite Program observations prove that the ionospheric storm effect of TIEGCM‐X is more reasonable. The well‐validated TIEGCM‐X has significant potential applications in ionospheric/thermospheric studies, such as the responses to storms, low‐latitude dynamics, and data assimilation.

     
    more » « less
  3. Abstract

    A dramatic thermospheric temperature enhancement and inversion layer (TTEIL) was observed by the Fe Boltzmann lidar at McMurdo, Antarctica during a geomagnetic storm (Chu et al. 2011,https://doi.org/10.1029/2011GL050016). The Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (TIEGCM) driven by empirical auroral precipitation and background electric fields cannot adequately reproduce the TTEIL. We incorporate the Defense Meteorological Satellite Program (DMSP)/Special Sensor Ultraviolet Spectrographic Imager (SSUSI) auroral precipitation maps, which capture the regional‐scale features into TIEGCM and add subgrid electric field variability in the regions with strong auroral activity. These modifications enable the simulation of neutral temperatures closer to lidar observations and neutral densities closer to GRACE satellite observations (~475 km). The regional scale auroral precipitation and electric field variabilities are both needed to generate strong Joule heating that peaks around 120 km. The resulting temperature increase leads to the change of pressure gradients, thus inducing a horizontal divergence of air flow and large upward winds that increase with altitude. Associated with the upwelling wind is the adiabatic cooling gradually increasing with altitude and peaking at ~200 km. The intense Joule heating around 120 km and strong cooling above result in differential heating that produces a sharp TTEIL. However, vertical heat advection broadens the TTEIL and raises the temperature peak from ~120 to ~150 km, causing simulations deviating from observations. Strong local Joule heating also excites traveling atmospheric disturbances that carry the TTEIL signatures to other regions. Our study suggests the importance of including fine‐structure auroral precipitation and subgrid electric field variability in the modeling of storm‐time ionosphere‐thermosphere responses.

     
    more » « less
  4. Abstract

    This work conducts a focused study of subauroral ion‐neutral coupling processes and midlatitude ionospheric/thermospheric responses in North America during a minor but quite geo‐effective storm on September 27–28, 2019 under deep solar minimum conditions. Several prominent storm‐time disturbances and associated electrodynamics/dynamics were identified and comprehensively analyzed using Millstone Hill and Poker Flat incoherent scatter radar measurements, Fabry‐Perot interferometer data, total electron content data from Global Navigation Satellite System observations, and thermospheric composition O/N2data from the Global‐scale Observations of Limb and Disk mission. Despite solar minimum conditions, this minor storm produced several prominent dynamic features, in particular (a) Intense subauroral polarization stream (SAPS) of 1,000 m/s, overlapping with a deepened main trough structure. (b) An enhanced westward wind of 230 m/s and a significant poleward wind surge of 85 m/s occurred in the post‐SAPS period. (c) Large‐scale traveling ionospheric disturbances (TIDs) were generated and propagated equatorward across mid‐latitudes in the storm main phase. TID characteristics were significantly affected by SAPS, evolving into divergent propagation patterns. (d) SAPS was situated on the poleward edge of a considerable storm‐enhanced density structure. (e) The midlatitude ionosphere and thermosphere exhibited a prolonged positive storm effect in the main phase and beginning of recovery phase, with 5–10 TECU increase and 10%–30% O/N2enhancement for 12 h. This was followed by a considerable negative storm effect with 5–10 TECU and 20%–40% O/N2decrease. Results show that minor storm intervals can produce substantial mid‐latitude ionospheric and thermospheric dynamics in low solar flux conditions.

     
    more » « less
  5. Abstract

    Ionospheric storm enhanced density (SED) has been extensively investigated using total electron content deduced from GPS ground and satellite‐borne receivers. However, dayside in situ electron density measurements have not been analyzed in detail for SEDs yet. We report in situ electron density measurements of a SED event in the Northern Hemisphere (NH) at the noon meridian plane measured by the Challenging Minisatellite Payload (CHAMP) polar‐orbiting satellite at about 390 km altitude during the 20 November 2003 magnetic storm. The CHAMP satellite measurements render rare documentation about the dayside SED's life cycle at a fixed magnetic local time (MLT) through multiple passes. Solar wind drivers triggered the SED onset and controlled its lifecycle through its growth and retreat phases. The SED electron density enhancement extended from the equatorial ionization anomaly to the noon cusp. The midlatitude electron density increased to a maximum at the end of the growth phase. Afterward, the dayside SED region retreated gradually to lower magnetic latitudes. The observations showed a hemisphere asymmetry, with the NH electron density exhibiting a more significant enhancement. The simulations using the Thermosphere Ionosphere Electrodynamic General Circulation model show a good agreement with the CHAMP observations. The simulations indicate that the dayside midlatitude electron density enhancement has a complicated dependence on vertical ion drift, neutral wind, magnetic latitude, MLT, and the height of the F2 layer. Finally, we discuss the notion of using the mean cross‐polar cap electric field as a proxy for assessing the effects of solar wind drivers on producing midlatitude electron density enhancement.

     
    more » « less