skip to main content


Title: Kinematic Rupture Generator Based on 3‐D Spontaneous Rupture Simulations Along Geometrically Rough Faults
Abstract

Spontaneous rupture simulations along geometrically rough faults have been shown to produce realistic far‐field spectra and comparable fits with ground motion metrics such as spectral accelerations and peak motions from Ground Motion Prediction Equations (GMPEs), but they are too computationally demanding for use with physics‐based probabilistic seismic hazard analysis efforts. Here, we present our implementation of a kinematic rupture generator that matches the characteristics of, at least in a statistical sense, rough‐fault spontaneous rupture models. To this end, we analyze ~100 dynamic rupture simulations on strike‐slip faults withMwranging from 6.4 to 7.2. We find that our dynamic simulations follow empirical scaling relationships for strike‐slip events and provide source spectra comparable to a source model withω−2decay. To define our kinematic source model, we use a regularized Yoffe function parameterized in terms of slip, peak‐time, rise‐time, and rupture initiation time. These parameters are defined through empirical relationships with random fields whose one‐ and two‐point statistics are derived from the dynamic rupture simulations. Our rupture generator reproduces Next Generation Attenuation (NGA) West2 GMPE medians and intraevent standard deviations of spectral accelerations with periods as short as 0.2 s for ensembles of ground motion simulations. Our rupture generator produces kinematic source models forM6.4–7.2 strike‐slip scenarios that can be used in broadband physics‐based probabilistic seismic hazard efforts or to supplement data in areas of limited observations for the development of future GMPEs.

 
more » « less
NSF-PAR ID:
10453738
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
125
Issue:
10
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tsunami generation from earthquake-induced seafloor deformations has long been recognized as a major hazard to coastal areas. Strike-slip faulting has generally been considered insufficient for triggering large tsunamis, except through the generation of submarine landslides. Herein, we demonstrate that ground motions due to strike-slip earthquakes can contribute to the generation of large tsunamis (>1 m), under rather generic conditions. To this end, we developed a computational framework that integrates models for earthquake rupture dynamics with models of tsunami generation and propagation. The three-dimensional time-dependent vertical and horizontal ground motions from spontaneous dynamic rupture models are used to drive boundary motions in the tsunami model. Our results suggest that supershear ruptures propagating along strike-slip faults, traversing narrow and shallow bays, are prime candidates for tsunami generation. We show that dynamic focusing and the large horizontal displacements, characteristic of strike-slip earthquakes on long faults, are critical drivers for the tsunami hazard. These findings point to intrinsic mechanisms for sizable tsunami generation by strike-slip faulting, which do not require complex seismic sources, landslides, or complicated bathymetry. Furthermore, our model identifies three distinct phases in the tsunamic motion, an instantaneous dynamic phase, a lagging coseismic phase, and a postseismic phase, each of which may affect coastal areas differently. We conclude that near-source tsunami hazards and risk from strike-slip faulting need to be re-evaluated.

     
    more » « less
  2. Abstract

    The Húsavík‐Flatey Fault Zone (HFFZ) is the largest strike‐slip fault in Iceland and poses a high seismic risk to coastal communities. To investigate physics‐based constraints on earthquake hazards, we construct three fault system models of varying geometric complexity and model 79 3‐D multi‐fault dynamic rupture scenarios in the HFFZ. By assuming a simple regional prestress and varying hypocenter locations, we analyze the rupture dynamics, fault interactions, and the associated ground motions up to 2.5 Hz. All models account for regional seismotectonics, topo‐bathymetry, 3‐D subsurface velocity, viscoelastic attenuation, and off‐fault plasticity, and we explore the effect of fault roughness. The rupture scenarios obey earthquake scaling relations and predict magnitudes comparable to those of historical events. We show how fault system geometry and segmentation, hypocenter location, and prestress can affect the potential for rupture cascading, leading to varying slip distributions across different portions of the fault system. Our earthquake scenarios yield spatially heterogeneous near‐field ground motions modulated by geometric complexities, topography, and rupture directivity, particularly in the near‐field. The average ground motion attenuation characteristics of dynamic rupture scenarios of comparable magnitudes and mean stress drop are independent of variations in source complexity, magnitude‐consistent and in good agreement with the latest regional empirical ground motion models. However, physics‐based ground motion variability changes considerably with fault‐distance and increases for unilateral compared to bilateral ruptures. Systematic variations in physics‐based near‐fault ground motions provide important insights into the mechanics and potential earthquake hazard of large strike‐slip fault systems, such as the HFFZ.

     
    more » « less
  3. Abstract

    Given recent advances in geodetic data, interseismic locking models along the megathrust now become useful to qualitatively evaluate future earthquake potential. However, an individual earthquake's true rupture potential is challenging, as it depends on more than just a static image of prior locking. Here, we test the determinism of interseismic locking models using spontaneous rupture simulations and the well‐resolved processes associated with the 2012 moment magnitude (Mw) 7.6 Nicoya earthquake. To do so, we estimate initial megathrust stress from locking by assuming that the entire slip deficit will be released in the next megathrust earthquake. Then we initiate spontaneous ruptures at the hypocenter of the 2012 Nicoya earthquake. We find scenarios that approximate the same coseismic slip distribution and final earthquake moment magnitude as obtained from seismic and geodetic observations, demonstrating that deriving potential rupture scenarios from interseismic locking is feasible. We also find that spontaneous rupture scenarios from different locking models differ in moment rate duration and thus ground motion prediction, although the final slip distribution and moment magnitude were similar. The results highlight that quantifying rupture scenarios and ground motions from reliable locking models by dynamic rupture simulations can be an effective tool for seismic hazard assessment in subduction zones.

     
    more » « less
  4. Abstract

    Mature faults with large cumulative slip often separate rocks with dissimilar elastic properties and show asymmetric damage distribution. Elastic contrast across such bimaterial faults can significantly modify various aspects of earthquake rupture dynamics, including normal stress variations, rupture propagation direction, distribution of ground motions, and evolution of off‐fault damage. Thus, analyzing elastic contrasts of bimaterial faults is important for understanding earthquake physics and related hazard potential. The effect of elastic contrast between isotropic materials on rupture dynamics is relatively well studied. However, most fault rocks are elastically anisotropic, and little is known about how the anisotropy affects rupture dynamics. We examine microstructures of the Sandhill Corner shear zone, which separates quartzofeldspathic rock and micaceous schist with wider and narrower damage zones, respectively. This shear zone is part of the Norumbega fault system, a Paleozoic, large‐displacement, seismogenic, strike‐slip fault system exhumed from middle crustal depths. We calculate elastic properties and seismic wave speeds of elastically anisotropic rocks from each unit having different proportions of mica grains aligned sub‐parallel to the fault. Our findings show that the horizontally polarized shear wave propagating parallel to the bimaterial fault (with fault‐normal particle motion) is the slowest owing to the fault‐normal compliance and therefore may be important in determining the elastic contrast that affects rupture dynamics in anisotropic media. Following results from subshear rupture propagation models in isotropic media, our results are consistent with ruptures preferentially propagated in the slip direction of the schist, which has the slower horizontal shear wave and larger fault‐normal compliance.

     
    more » « less
  5. ABSTRACT Frictional heating during earthquake rupture raises the fault-zone fluid pressure, which affects dynamic rupture and seismic radiation. Here, we investigate two key parameters governing thermal pressurization of pore fluids – hydraulic diffusivity and shear-zone half-width – and their effects on earthquake rupture dynamics, kinematic source properties, and ground motions. We conduct 3D strike-slip dynamic rupture simulations assuming a rate-and-state dependent friction law with strong velocity weakening coupled to thermal-pressurization of pore fluids. Dynamic rupture evolution and ground shaking are densely evaluated across the fault and Earth’s surface to analyze the variations of rupture parameters (slip, peak slip rate, rupture speed, and rise time), correlations among rupture parameters, and variability of peak ground velocity. Our simulations reveal how variations in thermal-pressurization affect earthquake rupture properties. We find that the mean slip and rise time decrease with increasing hydraulic diffusivity, whereas mean rupture speed and peak slip-rate remain almost constant. Mean slip, peak slip-rate, and rupture speed decrease with increasing shear-zone half-width, whereas mean rise time increases. Shear-zone half-width distinctly affects the correlation between rupture parameters, especially for parameter pairs (slip, rupture speed), (peak slip-rate, rupture speed), and (rupture speed, rise time). Hydraulic diffusivity has negligible effects on these correlations. Variations in shear-zone half-width primarily impact rupture speed, which then may affect other rupture parameters. We find a negative correlation between slip and peak slip-rate, unlike simpler dynamic rupture models. Mean peak ground velocities decrease faster with increasing shear-zone half-width than with increasing hydraulic diffusivity, whereas ground-motion variability is similarly affected by both the parameters. Our results show that shear-zone half-width affects rupture dynamics, kinematic rupture properties, and ground shaking more strongly than hydraulic diffusivity. We interpret the importance of shear-zone half-width based on the characteristic time of diffusion. Our findings may inform pseudodynamic rupture generators and guide future studies on how to account for thermal-pressurization effects. 
    more » « less