skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: A Self‐Sodiophilic Carbon Host Promotes the Cyclability of Sodium Anode
Abstract Benefiting from abundant resource reserves and considerable theoretical capacity, sodium (Na) metal is a strong anode candidate for low‐cost, large‐scale energy storage applications. However, extensive volume change and mossy/dendritic growth during Na electrodeposition have impeded the practical application of Na metal batteries. Herein, a self‐sodiophilic carbon host, lignin‐derived carbon nanofiber (LCNF), is reported to accommodate Na metal through an infiltration method. Na metal is completely encapsulated in the 3D space of the LCNF host, where the strong interaction between LCNF and Na metal is mediated by the self‐sodiophilic sites. The resulting LCNF@Na electrode delivers good cycling stability with a low voltage hysteresis and a dendrite‐free morphology in commercial carbonate‐based electrolytes. When interfaced with O3‐NaNi0.33Mn0.33Fe0.33O2and P2‐Na0.7Ni0.33Mn0.55Fe0.1Ti0.02O2cathodes in full cell Na metal batteries, the LCNF@Na electrode enables high capacity retentions, long cycle life, and good rate capability. Even in a “lean” Na anode environment, the full cells can still deliver good electrochemical performance. The overall stable battery performance, based on a self‐sodiophilic, biomass‐derived carbon host, illuminates a promising path towards enabling low‐cost Na metal batteries.  more » « less
Award ID(s):
1912885
PAR ID:
10453753
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
31
Issue:
9
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Earth-abundant, cost-effective electrode materials are essential for sustainable rechargeable batteries and global decarbonization. Manganese dioxide (MnO2) and hard carbon both exhibit high structural and chemical tunability, making them excellent electrode candidates for batteries. Herein, we elucidate the impact of electrolytes on the cycling performance of commercial electrolytic manganese dioxide in Li chemistry. We leverage synchrotron X-ray analysis to discern the chemical state and local structural characteristics of Mn during cycling, as well as to quantify the Mn deposition on the counter electrode. By using an ether-based electrolyte instead of conventional carbonate electrolytes, we circumvent the formation of a surface Mn(II)-layer and Mn dissolution from LixMnO2. Consequently, we achieved an impressive ∼100% capacity retention for MnO2after 300 cycles at C/3. To create a lithium metal-lean full cell, we introduce hard carbon as the anode which is compatible with ether-based electrolytes. Commercial hard carbon delivers a specific capacity of ∼230 mAh g−1at 0.1 A g−1without plateau, indicating a surface-adsorption mechanism. The resulting manganese dioxide||hard carbon full cell exhibits stable cycling and high Coulombic efficiency. Our research provides a promising solution to develop cost-effective, scalable, and safe energy storage solutions using widely available manganese oxide and hard carbon materials. 
    more » « less
  2. Abstract Iron ion batteries using Fe2+as a charge carrier have yet to be widely explored, and they lack high‐performing Fe2+hosting cathode materials to couple with the iron metal anode. Here, it is demonstrated that VOPO4∙2H2O can reversibly host Fe2+with a high specific capacity of 100 mAh g−1and stable cycling performance, where 68% of the initial capacity is retained over 800 cycles. In sharp contrast, VOPO4∙2H2O's capacity of hosting Zn2+fades precipitously over tens of cycles. VOPO4∙2H2O stores Fe2+with a unique mechanism, where upon contacting the electrolyte by the VOPO4∙2H2O electrode, Fe2+ions from the electrolyte get oxidized to Fe3+ions that are inserted and trapped in the VOPO4∙2H2O structure in an electroless redox reaction. The trapped Fe3+ions, thus, bolt the layered structure of VOPO4∙2H2O, which prevents it from dissolution into the electrolyte during (de)insertion of Fe2+. The findings offer a new strategy to use a redox‐active ion charge carrier to stabilize the layered electrode materials. 
    more » « less
  3. Abstract Ion‐insertion capacitors show promise to bridge the gap between supercapacitors of high power densities and batteries of high energy densities. While research efforts have primarily focused on Li+‐based capacitors (LICs), Na+‐based capacitors (SICs) are theoretically cheaper and more sustainable. Owing to the larger size of Na+compared to Li+, finding high‐rate anode materials for SICs has been challenging. Herein, an SIC anode architecture is reported consisting of TiO2nanoparticles anchored on a sheared‐carbon nanotubes backbone (TiO2/SCNT). The SCNT architecture provides advantages over other carbon architectures commonly used, such as reduced graphene oxide and CNT. In a half‐cell, the TiO2/SCNT electrode shows a capacity of 267 mAh g−1at a 1 C charge/discharge rate and a capacity of 136 mAh g−1at 10 C while maintaining 87% of initial capacity over 1000 cycles. When combined with activated carbon (AC) in a full cell, an energy density and power density of 54.9 Wh kg−1and 1410 W kg−1, respectively, are achieved while retaining a 90% capacity retention over 5000 cycles. The favorable rate capability, energy and power density, and durability of the electrode is attributed to the enhanced electronic and Na+conductivity of the TiO2/SCNT architecture. 
    more » « less
  4. Electronic connections between active material particles and the conductive carbon binder domain govern high-energy commercial Li-ion batteries' rate capability and lifetime (LIB). This work develops an in situ electrochemical fluorescent microscopy (EFM) technique that maps fluorescence intensity to these local electronic connections. Specifically, rapid redox kinetics of an electrofluorophore translates to reaction distributions limited by the electronic accessibility of battery electrode regions and individual active material particles. This technique can visualize hot spots, dead zones, and isolated particles on the electrode surface. EFM characterization of a series of LiNi0.33Mn0.33Co0.33O2electrodes across processing parameters finds a significant negative correlation between the number of disconnected active particles and the rate capability. This low-cost technique provides quantitative mesoscale characterization of commercial LIB electrodes with fast throughput (<60 s) to facilitate rapid research and development and provide manufacturing quality control. 
    more » « less
  5. Abstract Thickening electrodes is one effective approach to increase active material content for higher energy and low‐cost lithium‐ion batteries, but limits in charge transport and huge mechanical stress generation result in poor performance and eventual cell failure. This paper reports a new electrode fabrication process, referred to as µ‐casting, enabling ultrathick electrodes that address the trade‐off between specific capacity and areal/volumetric capacity. The proposed µ‐casting is based on a patterned blade, enabling facile fabrication of 3D electrode structures. The study reveals the governing properties of µ‐casted ultrathick electrodes and how this simultaneously improves battery energy/power performance. The process facilitates a short diffusion path structure that minimizes intercalation‐induced stress, improving energy density and cell stability. This work also investigates the issues with structural integrity, porosity, and paste rheology, and also analyzes mechanical properties due to external force. The µ‐casting enables an ultrathick electrode (≈280 µm) that more effectively utilizes NMC‐811 (LiNi0.8Mn0.1Co0.1O2) cathode and mesocarbon microbeads anode active materials compared to conventional thick electrodes, allowing high‐mass loading (35.7 mg cm−2), 40% higher specific capacity, and 30% higher areal capacity after 200 cycles, high C‐rate performance, and longer cycle life. 
    more » « less