skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multimodal Spectroscopic Study of Surface Termination Evolution in Cr 2 TiC 2 T x MXene
Abstract Control of surface functionalization of MXenes holds great potential, and in particular, may lead to tuning of magnetic and electronic order in the recently reported magnetic Cr2TiC2Tx. Here, vacuum annealing experiments of Cr2TiC2Txare reported with in situ electron energy loss spectroscopy and novel in situ Cr K‐edge extended energy loss fine structure analysis, which directly tracks the evolution of the MXene surface coordination environment. These in situ probes are accompanied by benchmarking synchrotron X‐ray absorption fine structure measurements and density functional theory calculations. With the etching method used here, the MXene has an initial termination chemistry of Cr2TiC2O1.3F0.8. Annealing to 600 °C results in the complete loss of F, but O termination is thermally stable up to (at least) 700 °C. These findings demonstrate thermal control of F termination in Cr2TiC2Txand offer a first step toward termination engineering this MXene for magnetic applications. Moreover, this work demonstrates high energy electron spectroscopy as a powerful approach for surface characterization in 2D materials.  more » « less
Award ID(s):
1911592
PAR ID:
10453756
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Interfaces
Volume:
8
Issue:
5
ISSN:
2196-7350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The crystal structure, electron energy-loss spectroscopy (EELS), heat capacity, and anisotropic magnetic and resistivity measurements are reported for Sn flux grown single crystals of orthorhombic Pr2Co3Ge5(U2Co3Si5-type,Ibam). Our findings show thato-Pr2Co3Ge5hosts nearly trivalent Pr ions, as evidenced by EELS and fits to temperature dependent magnetic susceptibility measurements. Complex magnetic ordering with a partially spin-polarized state emerges nearTsp= 32 K, with a spin reconfiguration transition nearTM= 15 K. Heat capacity measurements show that the phase transitions appear as broad peaks in the vicinity ofTspandTM. The magnetic entropy further reveals that crystal electric field splitting lifts the Hund’s rule degeneracy at low temperatures. Taken together, these measurements show that Pr2Co3Ge5is an environment for complexfstate magnetism with potential strongly correlated electron states. 
    more » « less
  2. Abstract MXenes are a new family of two-dimensional carbides and/or nitrides. Their 2D surfaces are typically terminated by O, OH and/or F atoms. Here we show that Ti3C2Tx—the most studied compound of the MXene family—is a good acid catalyst, thanks to the surface acid functionalities. We demonstrate this by applying Ti3C2Txin the epoxide ring-opening reaction of styrene oxide (SO) and its isomerization in the liquid phase. Modifying the MXene surface changes the catalytic activity and selectivity. By oxidizing the surface, we succeeded in controlling the type and number of acid sites and thereby improving the yield of the mono-alkylated product to >80%. Characterisation studies show that a thin oxide layer, which forms directly on the Ti3C2Txsurface, is essential for catalysing the SO ring-opening. We hypothesize that two kinds of acid sites are responsible for this catalysis: In the MXene, strong acid sites (both Lewis and Brønsted) catalyse both the ring-opening and the isomerization reactions, while in the Mxene–TiO2composite weaker acid sites catalyse only the ring-opening reaction, increasing the selectivity to the mono-alkylated product. 
    more » « less
  3. Two-dimensional (2D) transition metal carbides and nitrides, commonly known as MXenes, are a class of 2D materials with high free carrier densities, making them highly attractive candidates for plasmonic 2D materials. In this study, we use multiphoton photoemission electron microscopy (nP-PEEM) to directly image the plasmonic near fields of multilayers of the prototypical MXene, Ti3C2Tx, with mixed surface terminations (Tx = F, O, and OH). Photon-energy dependentnP-PEEM reveals a dispersive surface plasmon polariton between 1.4 and 1.9 electron volts on MXene flakes thicker than 30 nanometers and waveguide modes above 1.9 electron volts. Combining experiments with finite-difference time-domain simulations, we reveal the emergence of a visible surface plasmon polariton in MXenes, opening avenues for exploration of polaritonic phenomena in MXenes in the visible portion of the electromagnetic spectrum. 
    more » « less
  4. Abstract MXenes, two‐dimensional (2D) transition metal carbides and/or nitrides, possess surface termination groups such as hydroxyl, oxygen, and fluorine, which are available for surface functionalization. Their surface chemistry is critical in many applications. This article reports amine functionalization of Ti3C2TxMXene surface with [3‐(2‐aminoethylamino)‐propyl]trimethoxysilane (AEAPTMS). Characterization techniques such as X‐ray photoelectron spectroscopy verify the success of the surface functionalization and confirm that the silane coupling agent bonds to Ti3C2Txsurface both physically and chemically. The functionalization changes the MXene surface charge from −35 to +25 mV at neutral pH, which allows for in situ preparation of self‐assembled films. Further, surface charge measurements of the functionalized MXene at different pH values show that the functionalized MXene has an isoelectric point at a pH around 10.7, and the highest reported positive surface charge of +62 mV at a pH of 2.58. Furthermore, the existence of a mixture of different orientations of AEAPTMS and the simultaneous presence of protonated and free amine groups on the surface of Ti3C2Txare demonstrated. The availability of free amine groups on the surface potentially permits the fabrication of crosslinked electrically conductive MXene/epoxy composites, dye adsorbents, high‐performance membranes, and drug carriers. Surface modifications of this type are applicable to many other MXenes. 
    more » « less
  5. Abstract MXenes, a family of 2D transition‐metal carbides and nitrides, have excellent electrical conductivity and unique optical properties. However, MXenes oxidize in ambient conditions, which is accelerated upon heating. Intercalation of water also causes hydrolysis accelerating oxidation. Developing new tools to readily characterize MXenes’ thermal stability can enable deeper insights into their structure–property relationships. Here, in situ spectroscopic ellipsometry (SE) is employed to characterize the optical properties of three types of MXenes (Ti3C2Tx, Mo2TiC2Tx, and Ti2CTx) with varied composition and atomistic structures to investigate their thermal degradation upon heating under ambient environment. It is demonstrated that changes in MXene extinction and optical conductivity in the visible and near‐IR regions correlate well with the amount of intercalated water and hydroxyl termination groups and the degree of oxidation, measured using thermogravimetric analysis. Among the three MXenes, Ti3C2Txand Ti2CTx, respectively, have the highest and lowest thermal stability, indicating the role of transition‐metal type, synthesis route, and the number of atomic layers in MXene flakes. These findings demonstrate the utility of SE as a powerful in situ technique for rapid structure–property relationship studies paving the way for the further design, fabrication, and property optimization of novel MXene materials. 
    more » « less