skip to main content


Title: Enhanced Light–Matter Interaction in 10 B Monoisotopic Boron Nitride Infrared Nanoresonators
Abstract

Phonon‐polaritons, mixed excitations of light coupled to lattice vibrations (phonons), are emerging as a powerful platform for nanophotonic applications. This is because of their ability to concentrate light into extreme sub‐wavelength scales and because of their longer phonon lifetimes compared to their plasmonic counterparts. In this work, the infrared properties of phonon‐polaritonic nanoresonators made of monoisotopic10B hexagonal boron nitride (h‐BN) are explored, a material with increased phonon‐polariton lifetimes compared to naturally abundant h‐BN due to reduced photon scattering from randomly distributed isotopes. An average relative improvement of 50% of the quality factor of monoisotopic h‐BN nanoresonators is obtained with respect to nanoresonators made of naturally abundant h‐BN, allowing for the sensing of nanometric‐thick films of molecules through both surface‐enhanced absorption spectroscopy and refractive index sensing. Further, even strong coupling between molecular vibrations and the phonon‐polariton resonance in monoisotopic h‐BN ribbons can be achieved.

 
more » « less
NSF-PAR ID:
10453850
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
9
Issue:
5
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hexagonal boron nitride (h-BN) has been predicted to exhibit an in-plane thermal conductivity as high as ~ 550 W m−1K−1at room temperature, making it a promising thermal management material. However, current experimental results (220–420 W m−1K−1) have been well below the prediction. Here, we report on the modulation of h-BN thermal conductivity by controlling the B isotope concentration. For monoisotopic10B h-BN, an in-plane thermal conductivity as high as 585 W m−1K−1is measured at room temperature, ~ 80% higher than that of h-BN with a disordered isotope concentration (52%:48% mixture of10B and11B). The temperature-dependent thermal conductivities of monoisotopic h-BN agree well with first principles calculations including only intrinsic phonon-phonon scattering. Our results illustrate the potential to achieve high thermal conductivity in h-BN and control its thermal conductivity, opening avenues for the wide application of h-BN as a next-generation thin-film material for thermal management, metamaterials and metadevices.

     
    more » « less
  2. Abstract

    Photonics in the frequency range of 5–15 terahertz (THz) potentially open a new realm of quantum materials manipulation and biosensing. This range, sometimes called “the new terahertz gap”, is traditionally difficult to access due to prevalent phonon absorption bands in solids. Low‐loss phonon–polariton materials may realize sub‐wavelength, on‐chip photonic devices, but typically operate in mid‐infrared frequencies with narrow bandwidths and are difficult to manufacture on a large scale. Here, for the first time, quantum paraelectric SrTiO3enables broadband surface phonon–polaritonic devices in 7–13 THz. As a proof of concept, polarization‐independent field concentrators are designed and fabricated to locally enhance intense, multicycle THz pulses by a factor of 6 and increase the spectral intensity by over 90 times. The time‐resolved electric field inside the concentrators is experimentally measured by THz‐field‐induced second harmonic generation. Illuminated by a table‐top light source, the average field reaches 0.5 GV m−1over a large volume resolvable by far‐field optics. These results potentially enable scalable THz photonics with high breakdown fields made of various commercially available phonon–polariton crystals for studying driven phases in quantum materials and nonlinear molecular spectroscopy.

     
    more » « less
  3. Abstract

    We report C, N, Mg-Al, Si, and S isotope data of six 1–3μm-sized SiC grains of Type X from the Murchison CM2 chondrite, believed to have formed in the ejecta of core-collapse supernova (CCSN) explosions. Their C, N, and Si isotopic compositions are fully compatible with previously studied X grains. Magnesium is essentially monoisotopic26Mg which gives clear evidence for the decay of radioactive26Al. Inferred initial26Al/27Al ratios are between 0.6 and 0.78 which is at the upper end of previously observed ratios of X grains. Contamination with terrestrial or solar system Al apparently is low or absent, which makes the X grains from this study particularly interesting and useful for a quantitative comparison of Al isotope data with predictions from supernova models. The consistently high26Al/27Al ratios observed here may suggest that the lower26Al/27Al ratios of many X grains from the literature are the result of significant Al contamination and in part also of an improper quantification of26Al. The real dispersion of26Al/27Al ratios in X grains needs to be explored by future studies. The high observed26Al/27Al ratios in this work provide a crucial constraint for the production of26Al in CCSN models. We explored different CCSN models, including both “classical” and H ingestion CCSN models. It is found that the classical models cannot account for the high26Al/27Al ratios observed here; in contrast, H ingestion models are able to reproduce the26Al/27Al ratios along with C, N, and Si isotopic ratios reasonably well.

     
    more » « less
  4. Abstract

    The biaxial van der Waals semiconductor α‐phase molybdenum trioxide (α‐MoO3) has recently received significant attention due to its ability to support highly anisotropic phonon polaritons (PhPs)—infrared (IR) light coupled to lattice vibrations—offering an unprecedented platform for controlling the flow of energy at the nanoscale. However, to fully exploit the extraordinary IR response of this material, an accurate dielectric function is required. Here, the accurate IR dielectric function of α‐MoO3is reported by modeling far‐field polarized IR reflectance spectra acquired on a single thick flake of this material. Unique to this work, the far‐field model is refined by contrasting the experimental dispersion and damping of PhPs, revealed by polariton interferometry using scattering‐type scanning near‐field optical microscopy (s‐SNOM) on thin flakes of α‐MoO3, with analytical and transfer‐matrix calculations, as well as full‐wave simulations. Through these correlative efforts, exceptional quantitative agreement is attained to both far‐ and near‐field properties for multiple flakes, thus providing strong verification of the accuracy of this model, while offering a novel approach to extracting dielectric functions of nanomaterials. In addition, by employing density functional theory (DFT), insights into the various vibrational states dictating the dielectric function model and the intriguing optical properties of α‐MoO3are provided.

     
    more » « less
  5. Abstract

    Element isotopes are characterized by distinct atomic masses and nuclear spins, which can significantly influence material properties. Notably, however, isotopes in natural materials are homogenously distributed in space. Here, we propose a method to configure material properties by repositioning isotopes in engineered van der Waals (vdW) isotopic heterostructures. We showcase the properties of hexagonal boron nitride (hBN) isotopic heterostructures in engineering confined photon-lattice waves—hyperbolic phonon polaritons. By varying the composition, stacking order, and thicknesses of h10BN and h11BN building blocks, hyperbolic phonon polaritons can be engineered into a variety of energy-momentum dispersions. These confined and tailored polaritons are promising for various nanophotonic and thermal functionalities. Due to the universality and importance of isotopes, our vdW isotope heterostructuring method can be applied to engineer the properties of a broad range of materials.

     
    more » « less