skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Postseismic Deformation Following the 2015 M w 7.8 Gorkha (Nepal) Earthquake: New GPS Data, Kinematic and Dynamic Models, and the Roles of Afterslip and Viscoelastic Relaxation
Abstract We report Global Positioning System (GPS) measurements of postseismic deformation following the 2015 Mw7.8 Gorkha (Nepal) earthquake, including previously unpublished data from 13 continuous GPS stations installed in southern Tibet shortly after the earthquake. We use variational Bayesian Independent Component Analysis (vbICA) to extract the signal of postseismic deformation from the GPS time series, revealing a broad displacement field extending >150 km northward from the rupture. Kinematic inversions and dynamic forward models show that these displacements could have been produced solely by afterslip on the Main Himalayan Thrust (MHT) but would require a broad distribution of afterslip extending similarly far north. This would require the constitutive parameter(a − b)σto decrease northward on the MHT to ≤0.05 MPa (an extreme sensitivity of creep rate to stress change) and seems unlikely in light of the low interseismic coupling and high midcrustal temperatures beneath southern Tibet. We conclude that the northward reach of postseismic deformation more likely results from distributed viscoelastic relaxation, possibly in a midcrustal shear zone extending northward from the seismogenic MHT. Assuming a shear zone 5–20 km thick, we estimate an effective shear‐zone viscosity of ~3·1016–3·1017 Pa·s over the first 1.12 postseismic years. Near‐field deformation can be more plausibly explained by afterslip itself and implies(a − b)σ ~ 0.5–1 MPa, consistent with other afterslip studies. This near‐field afterslip by itself would have re‐increased the Coulomb stress by ≥0.05 MPa over >30% of the Gorkha rupture zone in the first postseismic year, and deformation further north would have compounded this reloading.  more » « less
Award ID(s):
1821853
PAR ID:
10453919
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
125
Issue:
9
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Afterslip could help to reveal seismogenic fault structure. The 2020 Mw 6.3 Nima earthquake happened in a pull-apart basin within the Qiangtang block, central Tibetan plateau. Previous studies have explained the coseismic and early (<6 mo) postseismic deformation by rupture and afterslip on a normal fault bounding the western side of the basin. Here, we resolved the 19-month Interferometric Synthetic Aperture Radar-measured sequences of postseismic displacements that revealed a second postseismic displacement center ~12 km to the east of the main fault. Fitting the postseismic displacement requires afterslip on both the main fault and an antithetic fault that probably forms a y-shaped pair of conjugate faults in a negative flower structure. Stress-driven afterslip models suggest that the required afterslip on the antithetic fault could be triggered by coseismic rupture of the main fault or by a simultaneous rupture on the antithetic fault. The afterslip on both faults occurred mainly up-dip to the coseismic slip and has released moment ~15%–19% of that by the coseismic rupture. These results provide insights into active extension in the central Tibetan plateau and highlight the complex nature of fault rupture and afterslip. 
    more » « less
  2. Abstract Megathrusts at convergent plate boundaries generate the largest and some of the most hazardous earthquakes on Earth. However, their physical properties, including those influencing fault slip accumulation and release and earthquake‐related surface displacements, are still poorly constrained at critical depths. Here, we combine seismic imaging and geodetic modeling to investigate the structure and mechanical behavior of the Main Himalayan Thrust fault (MHT) in the center of the 2015 Mw 7.8 Gorkha rupture in Nepal. Our results from two independent observations consistently suggest the presence of a channel associated with the MHT with high compliance (shear modulus as low as ∼4 GPa) and strain anisotropy (stiffer in the vertical orientation than in the horizontal), likely arising from a weak subducting layer with north‐dipping foliation. Such mechanical heterogeneity significantly influences the quantification of short‐term fault kinematics and associated earthquake potential, with implications on across‐scale dynamics of plate boundaries in Himalaya and elsewhere. 
    more » « less
  3. Several regularly recurring moderate-size earthquakes motivated dense instrumentation of the Parkfield section of the San Andreas fault, providing an invaluable near-fault observatory. We present a seismo-geodetic dynamic inversion of the 2004 Parkfield earthquake, which illuminates the interlinked complexity of faulting across time scales. Using fast-velocity-weakening rate-and-state friction, we jointly model 3D coseismic dynamic rupture and the 90-day evolution of postseismic slip. We utilize a parallel tempering Markov chain Monte Carlo approach to solve this non-linear high-dimensional inverse problem, constraining spatially varying prestress and fault friction parameters by 30 strong motion and 12 GPS stations. From visiting >2 million models, we discern complex coseismic rupture dynamics that transition from a strongly radiating pulse-like phase to a mildly radiating crack-like phase. Both coseismic phases are separated by a shallow strength barrier that nearly arrests rupture and leads to a gap in the afterslip. Coseismic rupture termination involves distinct arrest mechanisms that imprint on afterslip kinematics. A backward propagating afterslip front may drive delayed aftershock activity above the hypocenter. Analysis of the 10,500 best-fitting models uncovers local correlations between prestress levels and the reference friction coefficient, alongside an anticorrelation between prestress and rate-state parameters b−a. We find that a complex, fault-local interplay of dynamic parameters determines the nucleation, propagation, and arrest of both, co- and postseismic faulting. This study demonstrates the potential of inverse physics-based modeling to reveal novel insights and detailed characterizations of well-recorded earthquakes. 
    more » « less
  4. Abstract Several regularly recurring moderate‐size earthquakes motivated dense instrumentation of the Parkfield section of the San Andreas fault (SAF), providing an invaluable near‐fault observatory. We present a seismo‐geodetic dynamic inversion of the 2004 Parkfield earthquake, which illuminates the interlinked complexity of faulting across time scales. Using fast‐velocity‐weakening rate‐and‐state friction, we jointly model coseismic dynamic rupture and the 90‐day evolution of postseismic slip in a 3D domain. We utilize a parallel tempering Markov chain Monte Carlo approach to solve this non‐linear high‐dimensional inverse problem, constraining spatially varying prestress and fault friction parameters by 30 strong motion and 12 GPS stations. From visiting 2 million models, we discern complex coseismic rupture dynamics that transition from a strongly radiating pulse‐like phase to a mildly radiating crack‐like phase. Both coseismic phases are separated by a shallow strength barrier that nearly arrests rupture and leads to a gap in the afterslip, reflecting the geologic heterogeneity along this segment of the SAF. Coseismic rupture termination involves distinct arrest mechanisms that imprint on afterslip kinematics. A backward propagating afterslip front may drive delayed aftershock activity above the hypocenter. Trade‐off analysis of the 10,500 best‐fitting models uncovers local correlations between prestress levels and the reference friction coefficient, alongside an anticorrelation between prestress and rate‐state parameters . We find that a complex, fault‐local interplay of dynamic parameters determines the nucleation, propagation, and arrest of both, co‐ and postseismic faulting. This study demonstrates the potential of inverse physics‐based modeling to reveal novel insights and detailed characterizations of well‐recorded earthquakes. 
    more » « less
  5. Abstract The heterogeneous seafloor topography of the Nazca Plate as it enters the Ecuador subduction zone provides an opportunity to document the influence of seafloor roughness on slip behavior and megathrust rupture. The 2016 Mw7.8 Pedernales Ecuador earthquake was followed by a rich and active postseismic sequence. An internationally coordinated rapid response effort installed a temporary seismic network to densify coastal stations of the permanent Ecuadorian national seismic network. A combination of 82 onshore short and intermediate period and broadband seismic stations and six ocean bottom seismometers recorded the postseismic Pedernales sequence for over a year after the mainshock. A robust earthquake catalog combined with calibrated relocations for a subset of magnitude ≥4 earthquakes shows pronounced spatial and temporal clustering. A range of slip behavior accommodates postseismic deformation including earthquakes, slow slip events, and earthquake swarms. Models of plate coupling and the consistency of earthquake clustering and slip behavior through multiple seismic cycles reveal a segmented subduction zone primarily controlled by subducted seafloor topography, accreted terranes, and inherited structure. The 2016 Pedernales mainshock triggered moderate to strong earthquakes (5 ≤ M ≤ 7) and earthquake swarms north of the mainshock rupture close to the epicenter of the 1906 Mw8.8 earthquake and in the segment of the subduction zone that ruptured in 1958 in a Mw7.7 earthquake. 
    more » « less