Abstract A network of 15 Surface Elevation Tables (SETs) at North Inlet estuary, South Carolina, has been monitored on annual or monthly time scales beginning from 1990 to 1996 and continuing through 2022. Of 73 time series in control plots, 12 had elevation gains equal to or exceeding the local rate of sea-level rise (SLR, 0.34 cm/year). Rising marsh elevation in North Inlet is dominated by organic production and, we hypothesize, is proportional to net ecosystem production. The rate of elevation gain was 0.47 cm/year in plots experimentally fertilized for 10 years with N&P compared to nearby control plots that have gained 0.1 cm/year in 26 years. The excess gains and losses of elevation in fertilized plots were accounted for by changes in belowground biomass and turnover. This is supported by bioassay experiments in marsh organs where at age 2 the belowground biomass of fertilizedS. alternifloraplants was increasing by 1,994 g m−2 year−1, which added a growth premium of 2.4 cm/year to elevation gain. This was contrasted with the net belowground growth of 746 g m−2 year−1in controls, which can add 0.89 cm/year to elevation. Root biomass density was greater in the fertilized bioassay treatments than in controls, plateauing at about 1,374 g m−2and 472 g m−2, respectively. Growth of belowground biomass was dominated by rhizomes, which grew to 3,648 g m−2in the fertilized treatments after 3 years and 1,439 g m−2in the control treatments after 5 years. Depositional wetlands are limited by an exogenous supply of mineral sediment, whereas marshes like North Inlet could be classified as autonomous because they depend on in situ organic production to maintain elevation. Autonomous wetlands are more vulnerable to SLR because their elevation gains are constrained ultimately by photosynthetic efficiency. 
                        more » 
                        « less   
                    
                            
                            Declines in plant productivity drive loss of soil elevation in a tidal freshwater marsh exposed to saltwater intrusion
                        
                    
    
            Abstract We experimentally increased salinities in a tidal freshwater marsh on the Altamaha River (Georgia, USA) by exposing the organic rich soils to 3.5 yr of continuous (press) and episodic (pulse) treatments with dilute seawater to simulate the effects of climate change such as sea level rise (press) and drought (pulse). We quantified changes in root production and decomposition, soil elevation, and soil C stocks in replicated (n = 6) 2.5 × 2.5 m field plots. Elevated salinity had no effect on root decomposition, but it caused a significant reduction in root production and belowground biomass that is needed to build and maintain soil elevation capital. The lack of carbon inputs from root production resulted in reduced belowground biomass of 1631 ± 308 vs. 2964 ± 204 g/m2in control plots and an overall 2.8 ± 0.9 cm decline in soil surface elevation in the press plots in the first 3.5 yr, whereas the control (no brackish water additions) and the fresh (river water only) treatments gained 1.2 ± 0.4 and 1.7 ± 0.3 cm, respectively, in a 3.5‐yr period. There was no change in elevation of pulse plots after 3.5 yr. Based on measurements of bulk density and soil C, the decline of 2.8 cm of surface elevation resulted in a loss of 0.77 ± 0.5 kg C/m2in press plots. In contrast, the control and the fresh treatment plots gained 0.25 ± 0.04 and 0.36 ± 0.03 kg C/m2, respectively, which represents a net change in C storage of more than 1 kg C/m2. We conclude that, when continuously exposed to saltwater intrusion, the tidal freshwater marsh’s net primary productivity, especially root production, and not decomposition, are the main drivers of soil organic matter (SOM) accumulation. Reduced productivity leads to loss of soil elevation and soil C, which has important implications for tidal freshwater marsh persistence in the face of rising sea level. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1832178
- PAR ID:
- 10453920
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology
- Volume:
- 101
- Issue:
- 12
- ISSN:
- 0012-9658
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Tidal freshwater marshes can protect downstream ecosystems from eutrophication by intercepting excess nutrient loads, but recent studies in salt marshes suggest nutrient loading compromises their structural and functional integrity. Here, we present data on changes in plant biomass, microbial biomass and activity, and soil chemistry from plots in a tidal freshwater marsh on the Altamaha River (GA) fertilized for 10 yr with nitrogen (+N), phosphorus (+P), or nitrogen and phosphorus (+NP). Nitrogen alone doubled aboveground biomass and enhanced microbial activity, specifically rates of potential nitrification, denitrification, and methane production measured in laboratory incubations. Phosphorus alone increased soil P and doubled microbial biomass but did not affect microbial processes. Nitrogen or P alone decreased belowground biomass and soil carbon (C) whereas +NP increased aboveground biomass, microbial biomass and N cycling, and N, P, and C assimilation and burial more than either nutrient alone. Our findings suggest differential nutrient limitation of tidal freshwater macrophytes by N and microbes by P, similar to what has been observed in salt marshes. Macrophytes outcompete microbes for P in response to long‐term N and P additions, leading to increased soil C storage through increased inputs of belowground biomass relative to N and P added singly. The susceptibility of tidal freshwater marshes to long‐term nutrient enrichment and, hence their ability to mitigate eutrophication will depend on the quantity and relative proportion of N vs. P entering estuaries and tidal wetlands.more » « less
- 
            Abstract Tidal freshwater marshes (TFMs) are threatened by seawater intrusion, which can affect microbial communities and alter biogeochemical processes. Here, we report on a long‐term, large‐scale manipulative field experiment that investigated continuous (press) and episodic (pulse, 2 months/yr) inputs of brackish water on microbial communities in a TFM. After 2.5 yr, microbial diversity was lower in press treatments than in control (untreated) plots whereas diversity in pulse plots was unaffected by brackish water additions. Sulfate reducer abundance increased in response to both press and pulse treatments whereas methanogens did not differ among treatments. Our results, along with other lab and field measurements that show reduced soil respiration and extracellular enzyme activity suggest that continuous seawater intrusion will decrease macrophyte C inputs that reduce bacterial diversity in ways that also diminish ecosystem carbon cycling.more » « less
- 
            Different CO2exchange pathways were monitored for a year in short- and tall-formSpartina alternifloragrasses in a southeastern USA salt marsh at North Inlet, South Carolina. The tall form of grass growing close to a creek under favorable conditions reached a higher standing biomass than the short form of grass growing in the interior marsh. However, the photosynthetic parameters of both forms of grass were equivalent. The tall canopy had greater net canopy production, 973 versus 571 g C m−2year−1, canopy growth, 700 versus 131 g C m−2year−1, and canopy respiration, 792 versus 225 g C m−2year−1, but lower sediment respiration, 251 versus 392 g C m−2year−1. In a single growing season, tall-canopy biomass increased to intercept all the available solar radiation, which limits gross photosynthesis. Total respiration increased during the growing season in proportion to live biomass to a level that limited net production. Theoretically, the difference between net canopy production and canopy growth is carbon allocated to belowground growth and respiration. However, the computation of belowground production by this method was unrealistically low. This is important because carbon sequestration is proportional to belowground production and accounts for most of the vertical elevation gain of the marsh surface. Based on the allometry of standing live biomass, alternative estimates of belowground production were 927 and 193 g C m−2year−1in creekbank and interior marshes, which would yield gains in surface elevation of 0.2 and 0.04 cm/year, respectively.more » « less
- 
            Abstract Coastal marshes are globally important, carbon dense ecosystems simultaneously maintained and threatened by sea‐level rise. Warming temperatures may increase wetland plant productivity and organic matter accumulation, but temperature‐modulated feedbacks between productivity and decomposition make it difficult to assess how wetlands and their thick, organic‐rich soils will respond to climate warming. Here, we actively increased aboveground plant‐surface and belowground soil temperatures in two marsh plant communities, and found that a moderate amount of warming (1.7°C above ambient temperatures) consistently maximized root growth, marsh elevation gain, and belowground carbon accumulation. Marsh elevation loss observed at higher temperatures was associated with increased carbon mineralization and increased microtopographic heterogeneity, a potential early warning signal of marsh drowning. Maximized elevation and belowground carbon accumulation for moderate warming scenarios uniquely suggest linkages between metabolic theory of individuals and landscape‐scale ecosystem resilience and function, but our work indicates nonpermanent benefits as global temperatures continue to rise.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
