Abstract Barrow Canyon in the northeast Chukchi Sea is a critical choke point where Pacific‐origin water, heat, and nutrients enter the interior Arctic. While the flow through the canyon has been monitored for more than 20 years, questions remain regarding the dynamics by which the Pacific‐origin water is fluxed offshore, as well as what drives the variability. In 2018, two high‐resolution shipboard surveys of the canyon were carried out—one in summer and one in fall—to investigate the water mass distribution and velocity structure of the outflow. During the summer survey, high percentages of Pacific water (summer water + winter water) were present seaward of the canyon, associated with strong northward outflow from the canyon and a well‐developed westward‐flowing Chukchi Slope Current (CSC). By contrast, high percentages of Pacific water were confined to the canyon proper and outer Chukchi shelf during the late‐fall survey, at which time the canyon outflow and CSC were considerably weaker. These differences can be attributed to differences in wind forcing during the time period of two surveys. A cyclone‐like circulation was present in the canyon during both surveys, which was also evident in the satellite‐derived sea surface height anomaly field. We argue that this feature corresponds to an arrested topographic Rossby wave, generated as the outflow responds to the deepening bathymetry of the canyon. By applying a self‐organizing map analysis using the satellite altimeter data from 2001 to 2020, we demonstrate that such a cyclone‐like structure is a prevailing aspect of the canyon outflow.
more »
« less
Evaluation of Shipboard and Satellite‐Derived Bathymetry and Gravity Data Over Seamounts in the Northwest Pacific Ocean
Abstract Earth's surface topography/bathymetry and gravity fields provide important constraints on crustal structure and the tectonic processes that act on it due, for example, to plate flexure and mantle convection. Such studies require, however, high accuracy measurements at a wide range of spatial scales. During the past few decades much progress has been made in the acquisition of bathymetry and gravity data using both shipboard and satellite altimeter methods. Surprisingly, there have been few comparisons of these data. During April–June, 2019 we had the opportunity onboard a R/VMarcus G. Langsethcruise in the northwest Pacific Ocean to compare data acquired with an EM122 Kongsberg swath bathymetry system and a refurbished Bell Aerospace BGM‐3 gravimeter with the most recent global bathymetry and gravity fields. We find that while the recovery of bathymetry and gravity from satellite radar altimeter data in areas of sparse shipboard data has been impressive, root mean square discrepancies in the range 175.5–303.4 m and 2.6–6.3 mGal exist between shipboard and satellite‐derived data. While these discrepancies are small, they are highly correlated and therefore have implications for the density structure, rock type and geological processes occurring on the deep seafloor. Shipboard data should continue to be acquired, especially over features such as seamounts, banks, and ridges that are associated with short wavelength (<25 km wavelength) bathymetric and gravimetric features beyond that is recoverable in satellite‐derived data.
more »
« less
- PAR ID:
- 10453954
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 125
- Issue:
- 10
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The yearly mode-1 M2internal tide model in 2019 is constructed using sea surface height measurements made by six concurrent satellite altimetry missions:Jason-3,Sentinel-3A,Sentinel-3B,CryoSat-2,Haiyang-2A, andSARAL/AltiKa. The model is developed following a three-step procedure consisting of two rounds of plane wave analysis with a spatial bandpass filter in between. Prior mesoscale correction is made on the altimeter data using AVISO gridded mesoscale fields. The model is labeled Y2019, because it represents the 1-yr-coherent internal tide field in 2019. In contrast, the model developed using altimeter data from 1992 to 2017 is labeled MY25, because it represents the multiyear-coherent internal tide field in 25 years. Thanks to the new mapping technique, model errors in Y2019 are as low as those in MY25. Evaluation using independent altimeter data confirms that Y2019 reduces slightly less variance (∼6%) than MY25. Further analysis reveals that the altimeter data from five missions (withoutJason-3) can yield an internal tide model of almost the same quality. Comparing Y2019 and MY25 shows that mode-1 M2internal tides are subject to significant interannual variability in both amplitude and phase, and their interannual variations are a function of location. Along southward internal tides from Amukta Pass, the energy flux in Y2019 is 2 times larger and the phase speed is about 1.1% faster. This mapping technique has been applied successfully to 2017 and 2018. This work demonstrates that yearly internal tides can be observed by concurrent altimetry missions and their interannual variations can be determined. Significance StatementThis work is motivated to study the interannual variations of internal tides using observation-based yearly internal tide models from satellite altimetry. Previous satellite observations of internal tides are usually based on 25 years of altimeter data from 1993 to 2017. The yearly subsetted altimeter data are short, so that the resultant yearly models are overwhelmed by noise. A new mapping technique is developed and demonstrated in this paper. It paves a path to study the interannual and decadal variations of internal tides on a global scale and monitor the global ocean changes by tracking long-range internal tides.more » « less
-
Abstract Models of bathymetry derived from satellite radar altimetry are essential for modeling many marine processes. They are affected by uncertainties which require quantification. We propose an uncertainty model that assumes errors are caused by the lack of high‐wavenumber content within the altimetry data. The model is then applied to a tsunami hazard assessment. We build a bathymetry uncertainty model for northern Chile. Statistical properties of the altimetry‐predicted bathymetry error are obtained using multibeam data. We find that a Von Karman correlation function and a Laplacian marginal distribution can be used to define an uncertainty model based on a random field. We also propose a method for generating synthetic bathymetry samples conditional to shipboard measurements. The method is further extended to account for interpolation uncertainties, when bathymetry data resolution is finer than∼10 km. We illustrate the usefulness of the method by quantifying the bathymetry‐induced uncertainty of a tsunami hazard estimate. We demonstrate that tsunami leading wave predictions at middle/near field tide gauges and buoys are insensitive to bathymetry uncertainties in Chile. This result implies that tsunami early warning approaches can take full advantage of altimetry‐predicted bathymetry in numerical simulations. Finally, we evaluate the feasibility of modeling uncertainties in regions without multibeam data by assessing the bathymetry error statistics of 15 globally distributed regions. We find that a general Von Karman correlation and a Laplacian marginal distribution can serve as a first‐order approximation. The standard deviation of the uncertainty random field model varies regionally and is estimated from a proposed scaling law.more » « less
-
Abstract Small‐scale convection beneath the oceanic plates has been invoked to explain off‐axis nonplume volcanism, departure from simple seafloor depth‐age relationships, and intraplate gravity lineations. We deployed 30 broadband ocean bottom seismometer stations on ∼40 Ma Pacific seafloor in a region notable for gravity anomalies, measured by satellite altimetry, elongated parallel to plate motion.P‐wave teleseismic tomography reveals alternating upper mantle velocity anomalies on the order of ±2%, aligned with the gravity lineations. These features, which correspond to ∼300°–500°K lateral temperature contrast, and possible hydrous or carbonatitic partial melt, are—surprisingly—strongest between 150 and 260 km depth, indicating rapid vertical motions through a low‐viscosity asthenospheric channel. Coherence and admittance analysis of gravity and topography using new multibeam bathymetry soundings substantiates the presence of mantle density variations, and forward modeling predicts gravity anomalies that qualitatively match observed lineations. This study provides observational support for small‐scale convective rolls beneath the oceanic plates.more » « less
-
Abstract Data from tide gauges and satellite altimeters are used to provide an up‐to‐date assessment of the mean seasonal cycle in sea level () over most of the global coastal ocean. The tide gauge records, where available, depict a seasonal cycle with complex spatial structure along and across continental boundaries, and an annual oscillation dominating over semiannual variability, except in a few regions (e.g., the northwestern Gulf of Mexico). Comparisons between tide gauge and altimeter data reveal substantial root‐mean‐square differences and only slight improvements in agreement when using along‐track data optimized for coastal applications. Quantification of the uncertainty in the altimeter products, inferred from comparing gridded and along‐track estimates, indicate that differences to tide gauges partly reflect short‐scale features of the seasonal cycle in proximity to the coasts. We additionally probe the seasonal budget using satellite gravimetry‐based manometric estimates and steric terms calculated from the World Ocean Atlas 2023. Focusing on global median values, the sum of the estimated steric and manometric harmonics can explain 65% (respectively 40%) of the annual (semiannual) variance in the coastal observations. We identify several regions, for example, the Australian seaboard, where the seasonal budget is not closed and illustrate that such analysis is mainly limited by the coarse spatial resolution of present satellite‐derived mass change products. For most regions with a sufficiently tight budget closure, we find that although the importance of the manometric term generally increases with decreasing water depth, steric contributions are non‐negligible near coastlines, especially at the annual frequency.more » « less
An official website of the United States government
