skip to main content


Title: Physical, structural, optical and gamma‐ray shielding properties of Na 2 O‐CdO‐Bi 2 O 3 ‐B 2 O 3 glasses
Abstract

The current study shows a new attempt to develop gamma‐ray shielding glasses. The proposed glass is a borate‐base composition modified with sodium and cadmium oxides and different concentrations of bismuth oxide. Based on the melt‐quenching technique, we prepared four glass compositions of 20NaO‐15CdO‐ (65−x)B2O3xBi2O3, wherex = 0, 10, 20, and 30 mol%. The amorphous nature of the prepared samples was confirmed by XRD. To get more details about the structure, FTIR and UV‐Vis‐NIR were performed to characterize the prepared glasses. Moreover, we used ab initio molecular dynamics simulations to create the possible structures of the new compositions, and compared with the experimental measurements. A series of shielding parameters was investigated based on the gamma‐ray emission in the range of 0.01‐10 MeV. The results revealed an improvement of the shielding parameters with increasing of Bi2O3content. The sample with the highest Bi2O3(S4) has the highestZeffand least HVL, while S1 (with no Bi2O3content) has the lowestZeffat all energy levels. The gamma‐ray transmission factor of the prepared glasses was compared with some commercial concretes. Finally, the new glasses especially with highest Bi2O3are recommended to use in gamma radiation shielding facilities.

 
more » « less
NSF-PAR ID:
10453970
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
International Journal of Applied Glass Science
Volume:
12
Issue:
2
ISSN:
2041-1286
Page Range / eLocation ID:
p. 259-273
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The structures of glasses in the lithium–bismuth orthoborate composition range deviate significantly from the short‐range order structure of the two crystalline end‐members. Although binary Li3BO3and BiBO3are solely of comprised trigonal orthoborate anions, all glasses formed by their combination contain four‐coordinated borate tetrahedra. We analyze the structure of (75−1.5x)Li2O–xBi2O3–(25+0.5x)B2O3glasses in increments ofx = 5, with11B magic‐angle spinning nuclear magnetic resonance (NMR), infrared (IR), and Raman spectroscopy. For the full series, the oxygen‐to‐boron ratio remains constant at O/B = 3:1. NMR quantifies an increase in the fraction of tetrahedral boron with increasing bismuth oxide content. Evolution of the mid‐IR profile suggests multiple types of tetrahedral boron sites. Raman spectroscopy reveals that Bi2O3tends to cluster within the lithium borate matrix when initially introduced and that this behavior transforms into a bismuthate network with increasing bismuth oxide content. In all cases, mixed Bi–O–B linkages are observed. The dual role of bismuth as network modifier and network former is likewise observed in the far IR. The glass transition temperature continuously increases with bismuth oxide content; however, the glass stability displays a maximum in the multicomponent glass ofx = 40.

     
    more » « less
  2. Abstract

    Resorbable glasses with nominal molar compositions of 20Na2O·30[(1−x)CaO·xSrO]∙50P2O5, wherex = 0, 0.25, 0.50, 0.75, and 1, were prepared and characterized. With the replacement of CaO by SrO, the molar volume, refractive index, and coefficient of thermal expansion increased, and the glass transition temperature, crystallization temperature, and viscosity decreased. The replacement of CaO by SrO decreased the dissolution rate in 37°C water by nearly an order of magnitude. Resorbable glass fibers drawn from melts of the 20Na2O·30CaO·50P2O5glass exhibited decreasing transmission of laser light (632 nm) in a predictable way as the fiber dissolved in a phosphate buffer solution. This demonstrated that these glasses could be used to produce resorbable fibers for temporary biosensing or therapeutic applications.

     
    more » « less
  3. Abstract

    The glassy solid electrolyte Lithium phosphorous oxynitride (LiPON) has been widely researched in thin film solid state battery format due to its outstanding stability when cycled against lithium. In addition, recent reports show thin film LiPON having interesting mechanical behaviors, especially its ability to resist micro‐scale cracking via densification and shear flow. In the present study, we have produced bulk LiPON glasses with varying nitrogen contents by ammonolysis of LiPO3melts. The resulting compositions were determined to be LiPO3‐3z/2Nz, where 0 ≤ z ≤ 0.75, and the z value of 0.75 is among the highest ever reported for this series of LiPON glasses. The short‐range order structures of the different resulting compositions were characterized by infrared, Raman,31P magic angle spinning nuclear magnetic resonance, and X‐ray photoelectron spectroscopies. Instrumented nano‐indentation was used to measure mechanical properties. It was observed that similar to previous studies, both trigonally coordinated (Nt) and doubly bonded (Nd) N co‐exist in the glasses in about the same amounts forz ≤ 0.36, the limit of N content in most previous studies. For glasses withz > 0.36, it was found that the fraction of the Ntincreased significantly while the fraction of Ndcorrespondingly decreased. The incorporation of nitrogen increased both the elastic modulus and hardness of the glass by approximately a factor of 1.5 when N/P ratio reaches 0.75. At the same time, an apparent embrittlement of the glass was observed due to nitridation, which was revealed by nanoindentation with an extra sharp nanoindenter tip.

     
    more » « less
  4. Erbium lanthanum titanate glasses were prepared by levitation melting for the spectroscopic study of ways to promote the mid-infrared fluorescence. Two series of heavily erbium doped glasses (15 wt%) were prepared with the addition of either Pr3+or Nd3+in amounts relative to Er3+of 0.05, 0.1, and 0.2. Both ions quench the lower Er3+laser level with the Pr3+doing so more rapidly. Although high co-dopant concentrations result in higher energy transfer, as clearly evidenced in upconversion and downconversion fluorescence measurements, the mid-infrared lifetime also suffers a reduction and, therefore, a balance must be struck in the co-dopant concentration. Lifetime and spectral measurements indicate that, at a fixed relative co-dopant amount, Pr3+is more effective than Nd3+at removing the bottleneck of the Er3+4I13/2level. Moreover, consideration of the lifetimes alongside the absorption data of the individual ions indicates that despite the large absorption cross-section of Nd3+at 808 nm, the concentration needed to yield more absorbed power than utilizing direct 976 nm excitation of Er3+results in unfavorable lifetimes of the mid-infrared transition. In the end, Pr3+prevails as the superior co-dopant in terms of the effects on fluorescence lifetimes as well as potential laser system design considerations. In a unique self-doping approach, a reducing melt atmosphere of Ar instead of O2creates a small fraction of Ti3+. In 5Er2O3-12La2O3-83TiO2glass, the presence of Ti3+quenches the4I13/2emission about 2.6 times more than the4I11/2when lifetimes are compared to an O2melt environment. As an additional means of increasing the mid-infrared emission, the effect of temperature on the mid- and near- infrared lifetimes of a lightly doped lanthanum titanate composition is investigated between 77-300 K. The mid-infrared lifetime increases by ∼30% while the near-infrared lifetime increases by ∼10%, which suggests in addition to co-doping, active cooling of the gain media will further enhance performance.

     
    more » « less
  5. Abstract

    Paqueite (Ca3TiSi2[Al,Ti,Si]3O14; IMA 2013‐053) and burnettite (CaVAlSiO6; IMA 2013‐054) are new refractory minerals, occurring as euhedral to subhedral crystals within aluminous melilite in A‐WP1, a type A Ca‐Al‐rich inclusion, andCGft‐12, a compact type A (CTA) from the Allende CV3 carbonaceous chondrite. Type paqueite from A‐WP1 has an empirical formula of (Ca2.91Na0.11)Ti4+Si2(Al1.64Ti4+0.90Si0.24V3+0.12Sc0.07Mg0.03)O14, with a trigonal structure in space groupP321 and cell parametersa = 7.943 Å,c = 4.930 Å, V = 269.37 Å3, andZ = 1. Paqueite’s general formula is Ca3TiSi2(Al,Ti,Si)3O14and the endmember formula is Ca3TiSi2(Al2Ti)O14. Type burnettite fromCGft‐12has an empirical formula of Ca1.01(V3+0.56Al0.25Mg0.18)(Si1.19Al0.81)O6. It assumes a diopside‐typeC2/cstructure witha = 9.80 Å,b = 8.85 Å,c = 5.36 Å, β = 105.6°,V = 447.7 Å3, andZ = 4. Burnettite’s general formula is Ca(V,Al,Mg)AlSiO6and the endmember formula is CaVAlSiO6. Paqueite and burnettite likely originated as condensates, but the observed grains may have crystallized from local V‐rich melts produced during a later thermal event. ForCGft‐12, the compositions of paqueite, clinopyroxene, and perovskite suggest that type As drew from two distinct populations of grains. Hibonite grains drew from multiple populations, but these were well mixed and not equilibrated prior to incorporation into type A host melilite.

     
    more » « less