Abstract Identifying and locating the geochemical and geophysical heterogeneities in the Earth’s interior is one of the most important and challenging tasks for the deep Earth scientists. Subducted oceanic crust metamorphizes into the dense eclogite in the upper mantle and is considered as a major cause of geochemical and geophysical heterogeneities in the deep Earth. In order to detect eclogitic materials inside the Earth, precise measurements of the high pressure‐temperature single‐crystal elasticity of major minerals in eclogite are thus exceedingly important. Omphacite, a Na,Al‐bearing clinopyroxene, constitutes up to 75 vol% of eclogite. In the present study, we performed the first high pressure‐temperature single‐crystal elasticity measurements of omphacite using Brillouin spectroscopy. Utilizing the finite‐strain approach, we obtained the following thermoelastic parameters for omphacite:KS0’ = 4.5(1),G0’ = 1.53(5), ∂KS0/∂T = −0.029(5) GPa/K, ∂G0/∂T = −0.013(5) GPa/K, withKS0 = 123(3) GPa,G0 = 74(2) GPa, andρ0 = 3.34(1) g/cm3. We found that the seismic velocities of undeformed eclogite are similar to pyrolite at the depths of 200–300 and 410–500 km, thus eclogite is seismically invisible at these depths. Combined with the lattice‐preferred orientations of the omphacite in naturally deformed eclogites, we also modeled seismic anisotropy of eclogite at various pressure‐temperature conditions. A 10 km thick subducted eclogitic crust can result in ∼0.2 s shear wave splitting in the Earth’s upper mantle. 
                        more » 
                        « less   
                    
                            
                            High‐Pressure Single‐Crystal Elasticity and Thermal Equation of State of Omphacite and Their Implications for the Seismic Properties of Eclogite in the Earth's Interior
                        
                    
    
            Abstract Omphacite is a major mineral phase of eclogite, which provides the main driving force for the slab subduction into the Earth's interior. We have measured the single‐crystal elastic moduli of omphacite at high pressures for the first time up to 18 GPa at ambient temperature using Brillouin spectroscopy. A least squares fit of the velocity‐pressure data to the third‐order finite strain equation of state yieldsKS0′ = 4.5 (3),G0′ = 1.6 (1) withρ0 = 3.34 (1) g/cm3,KS0 = 123 (3) GPa, andG0 = 74 (2) GPa. In addition, the synchrotron single‐crystal X‐ray diffraction data have been collected up to 18 GPa and 700 K. The fitting to Holland‐Powell thermal‐pressure equation of state yieldsKT0′ = 4.6 (5) andα0 = 2.7 (8) × 10−5 K−1. Based on the obtained thermoelastic parameters of omphacite, the anisotropic seismic velocities of eclogite are modeled and compared with pyrolite between 200 and 500 km. The largest contrast between the eclogite and pyrolite in terms of seismic properties is observed between ~310 and 410 km. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1646527
- PAR ID:
- 10454000
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 124
- Issue:
- 3
- ISSN:
- 2169-9313
- Page Range / eLocation ID:
- p. 2368-2377
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The 13 single-crystal adiabatic elastic moduli (Cij) of a C2/c jadeite sample close to the ideal composition (NaAlSi2O6) and a natural P2/n diopside-rich omphacite sample have been measured at ambient condition by Brillouin spectroscopy. The obtained Cij values for the jadeite sample are: C11 = 265.4(9) GPa, C22 = 247(1) GPa, C33 = 274(1) GPa, C44 = 85.8(7) GPa, C55 = 69.3(5) GPa, C66 = 93.0(7) GPa, C12 = 84(1) GPa, C13 = 66(1) GPa, C23 = 87(2) GPa, C15 = 5.4(7) GPa, C25 = 17(1) GPa, C35 = 28.7(6) GPa, C46 = 14.6(6) GPa. Voigt-Reuss-Hill averaging of the Cij values yields aggregate bulk modulus KS = 138(3) GPa and shear modulus G = 84(2) GPa for jadeite. Systematic analysis combing previous single-crystal elasticity measurements within the diopside-jadeite solid solution indicates that the linear trends are valid for most Cij values. The νp and νs of omphacite decrease with diopside content, though the velocity changes are small as diopside component exceeds 70%. We also found that both the isotropic νp and νs, as well as the seismic anisotropy of eclogite, changed strongly with the bulk-chemical composition. The relationship between the anisotropic velocities of eclogite and the chemical composition can be a useful tool to trace the origin of the eclogitic materials in the Earth's mantle.more » « less
- 
            Abstract Synchrotron‐based high‐pressure/high‐temperature single‐crystal X‐ray diffraction experiments to ~24 GPa and 700 K were conducted on eclogitic garnets (low‐Fe: Prp28Alm38Grs33Sps1and high‐Fe: Prp14Alm62Grs19Adr3Sps2) and omphacites (low‐Fe: Quad57Jd42Ae1and high‐Fe: Quad53Jd27Ae20), using an externally heated diamond anvil cell. Fitting the pressure‐volume‐temperature data to a third‐order Birch‐Murnaghan equation of state yields the thermoelastic parameters including bulk modulus (KT0), its pressure derivative (K′T0), temperature derivative ((∂KT/∂T)P), and thermal expansion coefficient (αT). The densities of the high‐Fe and low‐Fe eclogites were then modeled along typical geotherms of the normal mantle and the subducted oceanic crust to the transition zone depth (550 km). The metastable low‐Fe eclogite could be a reason for the stagnant slabs within the upper range of the transition zone. Eclogite would be responsible for density anomalies within 100–200 km in the upper mantle of Asia.more » « less
- 
            Abstract Fe‐Al‐bearing bridgmanite may be the dominant host for ferric iron in Earth's lower mantle. Here we report the synthesis of (Mg0.5Fe3+0.5)(Al0.5Si0.5)O3bridgmanite (FA50) with the highest Fe3+‐Al3+coupled substitution known to date. X‐ray diffraction measurements showed that at ambient conditions, the FA50 adopted the LiNbO3structure. Upon compression at room temperature to 18 GPa, it transformed back into the bridgmanite structure, which remained stable up to 102 GPa and 2,600 K. Fitting Birch‐Murnaghan equation of state of FA50 bridgmanite yieldsV0 = 172.1(4) Å3,K0 = 229(4) GPa withK0′ = 4(fixed). The calculated bulk sound velocity of the FA50 bridgmanite is ~7.7% lower than MgSiO3bridgmanite, mainly because the presence of ferric iron increases the unit‐cell mass by 15.5%. This difference likely represents the upper limit of sound velocity anomaly introduced by Fe3+‐Al3+substitution. X‐ray emission and synchrotron Mössbauer spectroscopy measurements showed that after laser annealing, ~6% of Fe3+cations exchanged with Al3+and underwent the high‐ to low‐spin transition at 59 GPa. The low‐spin proportion of Fe3+increased gradually with pressure and reached 17–31% at 80 GPa. Since the cation exchange and spin transition in this Fe3+‐Al3+‐enriched bridgmanite do not cause resolvable unit‐cell volume reduction, and the increase of low‐spin Fe3+fraction with pressure occurs gradually, the spin transition would not produce a distinct seismic signature in the lower mantle. However, it may influence iron partitioning and isotopic fractionation, thus introducing chemical heterogeneity in the lower mantle.more » « less
- 
            Xu, Hongwu (Ed.)Abstract We have measured the sound velocities and elasticity of synthetic polycrystalline β-Mg2SiO4 containing 1.2 wt% H2O to 10 GPa and 600 K using ultrasonic interferometry with synchrotron X-radiation. We determined sample length at high pressure and temperature using the sample’s X-radiographic image and applied travel times bond corrections appropriate to the experimental cell assembly configuration. Fitting the entire moduli data to third-order finite strain equations yields the adiabatic bulk [KS0 = 153.3(4) GPa] and shear [G0 = 101.8(2) GPa] moduli, their pressure derivatives (∂KS/∂P)T = 5.15(6) and (∂G/∂P)T = 1.68(3) and temperature derivatives (∂KS/∂T)P = −0.0179(9) GPa/K and (∂G/∂T)P = −0.0151(7) GPa/K. Comparing the bulk sound velocity contrast between the new hydrous wadsleyite data and olivine (0.38 wt% H2O) with seismic bulk sound velocity contrasts of 3.5% and 4.0% yields 53% and 60% olivine content, respectively, assuming an iso-chemical mantle model of the Earth. The results suggest that a hydrous mantle transition zone with a pyrolite model composition could explain the 410 km seismic velocity jump.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
