skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The single-crystal elastic properties of the jadeite-diopside solid solution and their implications for the composition-dependent seismic properties of eclogite
Abstract The 13 single-crystal adiabatic elastic moduli (Cij) of a C2/c jadeite sample close to the ideal composition (NaAlSi2O6) and a natural P2/n diopside-rich omphacite sample have been measured at ambient condition by Brillouin spectroscopy. The obtained Cij values for the jadeite sample are: C11 = 265.4(9) GPa, C22 = 247(1) GPa, C33 = 274(1) GPa, C44 = 85.8(7) GPa, C55 = 69.3(5) GPa, C66 = 93.0(7) GPa, C12 = 84(1) GPa, C13 = 66(1) GPa, C23 = 87(2) GPa, C15 = 5.4(7) GPa, C25 = 17(1) GPa, C35 = 28.7(6) GPa, C46 = 14.6(6) GPa. Voigt-Reuss-Hill averaging of the Cij values yields aggregate bulk modulus KS = 138(3) GPa and shear modulus G = 84(2) GPa for jadeite. Systematic analysis combing previous single-crystal elasticity measurements within the diopside-jadeite solid solution indicates that the linear trends are valid for most Cij values. The νp and νs of omphacite decrease with diopside content, though the velocity changes are small as diopside component exceeds 70%. We also found that both the isotropic νp and νs, as well as the seismic anisotropy of eclogite, changed strongly with the bulk-chemical composition. The relationship between the anisotropic velocities of eclogite and the chemical composition can be a useful tool to trace the origin of the eclogitic materials in the Earth's mantle.  more » « less
Award ID(s):
1646527
PAR ID:
10129010
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
American Mineralogist
Volume:
104
Issue:
7
ISSN:
0003-004X
Page Range / eLocation ID:
1016 to 1021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Clinopyroxene (Cpx) is commonly believed to be the best structural water (hydrogen) carrier among all major upper mantle nominally anhydrous minerals (NAMs). In this study, we have measured the single-crystal elastic properties of a Cpx, a natural omphacite with ~710 ppm water at ambient pressure (P) and temperature (T) conditions. Utilizing the single-crystal X-ray diffraction (XRD) and electron microprobe data, the unit cell parameters and density were determined as a = 9.603(9) Å, b = 8.774(3) Å, c = 5.250(2) Å, β = 106.76(5)o, V = 255.1(4) Å3, and ρ = 3.340(6) g/cm3. We performed Brillouin spectroscopy experiments on four single crystals along a total of 52 different crystallographic directions. The best-fit single-crystal elastic moduli (Cijs), bulk and shear moduli were determined as: C11 = 245(1) GPa, C22 = 210(2) GPa, C33 = 249.6(9) GPa, C44 = 75.7(9) GPa, C55 = 71.2(5) GPa, C66 = 76(1) GPa, C12 = 85(2) GPa, C13 = 70(1) GPa, C23 = 66(2) GPa, C15 = 8.0(6) GPa, C25 = 6(1) GPa, C35 = 34.7(6) GPa, and C46 = 8.7(7) GPa, KS0 = 125(3) GPa, and G0 = 75(2) GPa, respectively. Compared with the anticipated elastic properties of an anhydrous omphacite with the same chemical composition, our results indicate that the incorporation of ~710 ppm structural water has no resolvable effect on the aggregate elastic properties of omphacite, although small differences (up to ~9 GPa) were observed in C13, C25, C44, and C66. 
    more » « less
  2. Abstract Identifying and locating the geochemical and geophysical heterogeneities in the Earth’s interior is one of the most important and challenging tasks for the deep Earth scientists. Subducted oceanic crust metamorphizes into the dense eclogite in the upper mantle and is considered as a major cause of geochemical and geophysical heterogeneities in the deep Earth. In order to detect eclogitic materials inside the Earth, precise measurements of the high pressure‐temperature single‐crystal elasticity of major minerals in eclogite are thus exceedingly important. Omphacite, a Na,Al‐bearing clinopyroxene, constitutes up to 75 vol% of eclogite. In the present study, we performed the first high pressure‐temperature single‐crystal elasticity measurements of omphacite using Brillouin spectroscopy. Utilizing the finite‐strain approach, we obtained the following thermoelastic parameters for omphacite:KS0’ = 4.5(1),G0’ = 1.53(5), ∂KS0/∂T = −0.029(5) GPa/K, ∂G0/∂T = −0.013(5) GPa/K, withKS0 = 123(3) GPa,G0 = 74(2) GPa, andρ0 = 3.34(1) g/cm3. We found that the seismic velocities of undeformed eclogite are similar to pyrolite at the depths of 200–300 and 410–500 km, thus eclogite is seismically invisible at these depths. Combined with the lattice‐preferred orientations of the omphacite in naturally deformed eclogites, we also modeled seismic anisotropy of eclogite at various pressure‐temperature conditions. A 10 km thick subducted eclogitic crust can result in ∼0.2 s shear wave splitting in the Earth’s upper mantle. 
    more » « less
  3. Abstract Omphacite is a major mineral phase of eclogite, which provides the main driving force for the slab subduction into the Earth's interior. We have measured the single‐crystal elastic moduli of omphacite at high pressures for the first time up to 18 GPa at ambient temperature using Brillouin spectroscopy. A least squares fit of the velocity‐pressure data to the third‐order finite strain equation of state yieldsKS0′ = 4.5 (3),G0′ = 1.6 (1) withρ0 = 3.34 (1) g/cm3,KS0 = 123 (3) GPa, andG0 = 74 (2) GPa. In addition, the synchrotron single‐crystal X‐ray diffraction data have been collected up to 18 GPa and 700 K. The fitting to Holland‐Powell thermal‐pressure equation of state yieldsKT0′ = 4.6 (5) andα0 = 2.7 (8) × 10−5 K−1. Based on the obtained thermoelastic parameters of omphacite, the anisotropic seismic velocities of eclogite are modeled and compared with pyrolite between 200 and 500 km. The largest contrast between the eclogite and pyrolite in terms of seismic properties is observed between ~310 and 410 km. 
    more » « less
  4. Abstract The transition between blueschist and eclogite plays an important role in subduction zones via dehydration and densification processes in descending oceanic slabs. There are a number of previous petrological studies describing potential mineral reactions taking place at the transition. An experimental determination of such reactions could help constrain the pressure–temperature conditions of the transition as well as the processes of dehydration. However, previous experimental contributions have focused on the stability of spontaneously formed hydrous minerals in basaltic compositions rather than on reactions among already formed blueschist facies minerals. Therefore, this study conducted three groups of experiments to explore the metamorphic reactions among blueschist facies minerals at conditions corresponding to warm subduction, where faster reaction rates are possible on the time scale of laboratory experiments. The first group of experiments was to establish experimental reversals of the reaction glaucophane+paragonite to jadeite+pyrope+quartz+H2O over the range of 2.2–3.5 GPa and 650–820°C. This reaction has long been treated as key to the blueschist–eclogite transition. However, only the growth of glaucophane+paragonite was observed at the intersectional stability field of both paragonite and jadeite+quartz, confirming thermodynamic calculations that the reaction is not stable in the system Na2O–MgO–Al2O3–SiO2–H2O. The second set of experiments involved unreversed experiments using glaucophane+zoisite ±quartz in low‐Fe and Ca‐rich systems and were run at 1.8–2.4 GPa and 600–780°C. These produced omphacite+paragonite/kyanite+H2O accompanied by compositional shifts in the sodium amphibole, glaucophane, towards sodium–calcium amphiboles such as winchite (☐(CaNa)(Mg4Al)Si8O22(OH)2) and barroisite (☐(CaNa)(Mg3Al2)(AlSi7)O22(OH)2). This suggests that a two‐step dehydration occurs, first involving the breakdown of glaucophane+zoisite towards a paragonite‐bearing assemblage, then the breakdown of paragonite to release H2O. It also indicates that sodium–calcium amphibole can coexist with eclogite phases, thereby extending the thermal stability of amphibole to greater subduction zone depths. The third set of experiments was an experimental investigation at 2.0–2.4 GPa and 630–850°C involving a high‐Fe (Fe#=Fetotal/(Fetotal+Mg)≈0.36) natural glaucophane, synthetic paragonite and their eclogite‐forming reaction products. The results indicated that garnet and omphacite grew over most of these pressure–temperature conditions, which demonstrates the importance of Fe‐rich glaucophane in forming the key eclogite assemblage of garnet+omphacite, even under warm subduction zone conditions. Based on the experiments of this study, reaction between glaucophane+zoisite is instrumental in controlling dehydration processes at the blueschist–eclogite transition during warm subduction. 
    more » « less
  5. Abstract Alkali-rich aluminous high-pressure phases including calcium-ferrite (CF) type NaAlSiO4 are thought to constitute ~20% by volume of subducted mid-ocean ridge basalt (MORB) under lower mantle conditions. As a potentially significant host for incompatible elements in the deep mantle, knowledge of the crystal structure and physical properties of CF-type phases is therefore important to understanding the crystal chemistry of alkali storage and recycling in the Earth’s mantle. We determined the evolution of the crystal structure of pure CF-NaAlSiO4 and Fe-bearing CF-NaAlSiO4 at pressures up to ~45 GPa using synchrotron-based, single-crystal X-ray diffraction. Using the high-pressure lattice parameters, we also determined a third-order Birch-Murnaghan equation of state, with V0 = 241.6(1) Å3, KT0 = 220(4) GPa, and KT0′ = 2.6(3) for Fe-free CF, and V0 = 244.2(2) Å3, KT0 = 211(6) GPa, and KT0′ = 2.6(3) for Fe-bearing CF. The addition of Fe into CF-NaAlSiO4 resulted in a 10 ± 5% decrease in the stiffest direction of linear compressibility along the c-axis, leading to stronger elastic anisotropy compared with the Fe-free CF phase. The NaO8 polyhedra volume is 2.6 times larger and about 60% more compressible than the octahedral (Al,Si)O6 sites, with K0NaO8 = 127 GPa and K0(Al,Si)O6 ~304 GPa. Raman spectra of the pure CF-type NaAlSiO4 sample shows that the pressure coefficient of the mean vibrational mode, 1.60(7) cm–1/GPa, is slightly higher than 1.36(6) cm−1/GPa obtained for the Fe-bearing CF-NaAlSiO4 sample. The ability of CF-type phases to contain incompatible elements such as Na beyond the stability field of jadeite requires larger and less-compressible NaO8 polyhedra. Detailed high-pressure crystallographic information for the CF phases provides knowledge on how large alkali metals are hosted in alumina framework structures with stability well into the lowermost mantle. 
    more » « less