skip to main content


This content will become publicly available on June 1, 2024

Title: A Small Leak Will Sink Many Ships: Vulnerabilities Related to mini-programs Permissions
As a new format of mobile application, mini-programs, which function within a larger app and are built with HTML, CSS, and JavaScript web technology, have become the way to do almost everything in China. Many researchers have done the ecosystem or developing study, while the permission problem has not been investigated yet. In this paper, we present our studies on the permission management of mini-programs and conduct a systematic study on 9 popular mobile host app ecosystems that host over 7 million mini-programs. After testing over 2,580 APIs, we extracted a common abstract model for mini-programs’ permission control and revealed six categories of potential security vulnerabilities due to improper permission management. It is alarming that the current popular mobile app ecosystems (i.e., host apps) under study have at least one security vulnerability due to the mini-programs’ improper permission management. We present the corresponding attack methods to dissect these potential weaknesses further to exploit the discovered vulnerabilities. To prove that the revealed vulnerabilities may cause severe consequences in real-world use, we show three kinds of attacks without privileges or cracking the host apps. We have responsibly disclosed the newly discovered vulnerabilities, and two CVEs were issued. Finally, we put forward systematic suggestions to strengthen the standardization of mini-programs.  more » « less
Award ID(s):
1946231 2229752 2117785
NSF-PAR ID:
10454031
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC)
Page Range / eLocation ID:
595 to 606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It is commonly assumed that “free” mobile apps come at the cost of consumer privacy and that paying for apps could offer consumers protection from behavioral advertising and long-term tracking. This work empirically evaluates the validity of this assumption by comparing the privacy practices of free apps and their paid premium versions, while also gauging consumer expectations surrounding free and paid apps. We use both static and dynamic analysis to examine 5,877 pairs of free Android apps and their paid counterparts for differences in data collection practices and privacy policies between pairs. To understand user expectations for paid apps, we conducted a 998-participant online survey and found that consumers expect paid apps to have better security and privacy behaviors. However, there is no clear evidence that paying for an app will actually guarantee protection from extensive data collection in practice. Given that the free version had at least one thirdparty library or dangerous permission, respectively, we discovered that 45% of the paid versions reused all of the same third-party libraries as their free versions, and 74% of the paid versions had all of the dangerous permissions held by the free app. Likewise, our dynamic analysis revealed that 32% of the paid apps exhibit all of the same data collection and transmission behaviors as their free counterparts. Finally, we found that 40% of apps did not have a privacy policy link in the Google Play Store and that only 3.7% of the pairs that did reflected differences between the free and paid versions. 
    more » « less
  2. Home automation platforms enable consumers to conveniently automate various physical aspects of their homes. However, the security flaws in the platforms or integrated third-party products can have serious security and safety implications for the user’s physical environment. This article describes our systematic security evaluation of two popular smart home platforms, Google’s Nest platform and Philips Hue, which implement home automation “routines” (i.e., trigger-action programs involving apps and devices) via manipulation of state variables in a centralized data store . Our semi-automated analysis examines, among other things, platform access control enforcement, the rigor of non-system enforcement procedures, and the potential for misuse of routines, and it leads to 11 key findings with serious security implications. We combine several of the vulnerabilities we find to demonstrate the first end-to-end instance of lateral privilege escalation in the smart home, wherein we remotely disable the Nest Security Camera via a compromised light switch app. Finally, we discuss potential defenses, and the impact of the continuous evolution of smart home platforms on the practicality of security analysis. Our findings draw attention to the unique security challenges of smart home platforms and highlight the importance of enforcing security by design. 
    more » « less
  3. Cloud backends provide essential features to the mobile app ecosystem, such as content delivery, ad networks, analytics, and more. Unfortunately, app developers often disregard or have no control over prudent security practices when choosing or managing these services. Our preliminary study of the top 5,000 Google Play Store free apps identified 983 instances of N-day and 655 instances of 0-day vulnerabilities spanning across the software layers (OS, software services, communication, and web apps) of cloud backends. The mobile apps using these cloud backends represent between 1M and 500M installs each and can potentially affect hundreds of thousands of users. Further, due to the widespread use of third-party SDKs, app developers are often unaware of the backends affecting their apps and where to report vulnerabilities. This paper presents SkyWalker, a pipeline to automatically vet the backends that mobile apps contact and provide actionable remediation. For an input APK, SkyWalker extracts an enumeration of backend URLs, uses remote vetting techniques to identify software vulnerabilities and responsible parties, and reports mitigation strategies to the app developer. Our findings suggest that developers and cloud providers do not have a clear understanding of responsibilities and liabilities in regards to mobile app backends that leave many vulnerabilities exposed. 
    more » « less
  4. null (Ed.)
    A new mobile computing paradigm, dubbed mini-app, has been growing rapidly over the past few years since being introduced by WeChat in 2017. In this paradigm, a host app allows its end-users to install and run mini-apps inside itself, enabling the host app to build an ecosystem around (much like Google Play and Apple AppStore), enrich the host's functionalities, and offer mobile users elevated convenience without leaving the host app. It has been reported that there are over millions of mini-apps in WeChat. However, little information is known about these mini-apps at an aggregated level. In this paper, we present MiniCrawler, the first scalable and open source WeChat mini-app crawler that has indexed over 1,333,308 mini-apps. It leverages a number of reverse engineering techniques to uncover the interfaces and APIs in WeChat for crawling the mini-apps. With the crawled mini-apps, we then measure their resource consumption, API usage, library usage, obfuscation rate, app categorization, and app ratings at an aggregated level. The details of how we develop MiniCrawler and our measurement results are reported in this paper. 
    more » « less
  5. The transparency and privacy behavior of mobile browsers has remained widely unexplored by the research community. In fact, as opposed to regular Android apps, mobile browsers may present contradicting privacy behaviors. On the one end, they can have access to (and can expose) a unique combination of sensitive user data, from users’ browsing history to permission-protected personally identifiable information (PII) such as unique identifiers and geolocation. However, on the other end, they also are in a unique position to protect users’ privacy by limiting data sharing with other parties by implementing ad-blocking features. In this paper, we perform a comparative and empirical analysis on how hundreds of Android web browsers protect or expose user data during browsing sessions. To this end, we collect the largest dataset of Android browsers to date, from the Google Play Store and four Chinese app stores. Then, we developed a novel analysis pipeline that combines static and dynamic analysis methods to find a wide range of privacy-enhancing (e.g., ad-blocking) and privacy-harming behaviors (e.g., sending browsing histories to third parties, not validating TLS certificates, and exposing PII---including non-resettable identifiers---to third parties) across browsers. We find that various popular apps on both Google Play and Chinese stores have these privacy-harming behaviors, including apps that claim to be privacy-enhancing in their descriptions. Overall, our study not only provides new insights into important yet overlooked considerations for browsers’ adoption and transparency, but also that automatic app analysis systems (e.g., sandboxes) need context-specific analysis to reveal such privacy behaviors. 
    more » « less