Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The most common eye infection in people with diabetes is diabetic retinopathy (DR). It might cause blurred vision or even total blindness. Therefore, it is essential to promote early detection to prevent or alleviate the impact of DR. However, due to the possibility that symptoms may not be noticeable in the early stages of DR, it is difficult for doctors to identify them. Therefore, numerous predictive models based on machine learning (ML) and deep learning (DL) have been developed to determine all stages of DR. However, existing DR classification models cannot classify every DR stage or use a computationally heavy approach. Common metrics such as accuracy, F1 score, precision, recall, and AUC-ROC score are not reliable for assessing DR grading. This is because they do not account for two key factors: the severity of the discrepancy between the assigned and predicted grades and the ordered nature of the DR grading scale. This research proposes computationally efficient ensemble methods for the classification of DR. These methods leverage pre-trained model weights, reducing training time and resource requirements. In addition, data augmentation techniques are used to address data limitations, improve features, and improve generalization. This combination offers a promising approach for accurate and robust DR grading. In particular, we take advantage of transfer learning using models trained on DR data and employ CLAHE for image enhancement and Gaussian blur for noise reduction. We propose a three-layer classifier that incorporates dropout and ReLU activation. This design aims to minimize overfitting while effectively extracting features and assigning DR grades. We prioritize the Quadratic Weighted Kappa (QWK) metric due to its sensitivity to label discrepancies, which is crucial for an accurate diagnosis of DR. This combined approach achieves state-of-the-art QWK scores (0.901, 0.967 and 0.944) in the Eyepacs, Aptos, and Messidor datasets.more » « less
-
Differentially Private Stochastic Gradient Descent (DP-SGD) has become a widely used technique for safeguarding sensitive information in deep learning applications. Unfortunately, DP-SGD’s per-sample gradient clipping and uniform noise addition during training can significantly degrade model utility and fairness. We observe that the latest DP-SGD-Global-Adapt’s average gradient norm is the same throughout the training. Even when it is integrated with the existing linear decay noise multiplier, it has little or no advantage. Moreover, we notice that its upper clipping threshold increases exponentially towards the end of training, potentially impacting the model’s convergence. Other algorithms, DP-PSAC, Auto-S, DP-SGD-Global, and DP-F, have utility and fairness that are similar to or worse than DP-SGD, as demonstrated in experiments. To overcome these problems and improve utility and fairness, we developed the DP-SGD-Global-Adapt-V2-S. It has a step-decay noise multiplier and an upper clipping threshold that is also decayed step-wise. DP-SGD-Global-Adapt-V2-S with a privacy budget of 1 improves accuracy by 0.9795%, 0.6786%, and 4.0130% in MNIST, CIFAR10, and CIFAR100, respectively. It also reduces the privacy cost gap by 89.8332% and 60.5541% in unbalanced MNIST and Thinwall datasets, respectively. Finally, we develop mathematical expressions to compute the privacy budget using truncated concentrated differential privacy (tCDP) for DP-SGD-Global-Adapt-V2-T and DP-SGD-Global-Adapt-V2-S.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Recent advancements in person recognition have raised concerns about identity privacy leaks. Gait recognition through millimeter-wave radar provides a privacy-centric method. However, it is challenged by lower accuracy due to the sparse data these sensors capture. We are the first to investigate a cross-modal method, IdentityKD, to enhance gait-based person recognition with the assistance of facial data. IdentityKD involves a training process using both gait and facial data, while the inference stage is conducted exclusively with gait data. To effectively transfer facial knowledge to the gait model, we create a composite feature representation using contrastive learning. This method integrates facial and gait features into a unified embedding that captures the unique identityspecific information from both modalities. We employ two distinct contrastive learning losses. One minimizes the distance between embeddings of data pairs from the same person, enhancing intraclass compactness, while the other maximizes the distance between embeddings of data pairs from different individuals, improving inter-class separability. Additionally, we use an identity-wise distillation strategy, which tailors the training process for each individual, ensuring that the model learns to distinguish between different identities more effectively. Our experiments on a dataset of 36 subjects, each providing over 5000 face-gait pairs, demonstrate that IdentityKD improves identity recognition accuracy by 6.5% compared to baseline methods.more » « lessFree, publicly-accessible full text available December 3, 2025
-
In various scenarios from system login to writing emails, documents, and forms, keyboard inputs carry alluring data such as passwords, addresses, and IDs. Due to commonly existing non-alphabetic inputs, punctuation, and typos, users' natural inputs rarely contain only constrained, purely alphabetic keys/words. This work studies how to reveal unconstrained keyboard inputs using auditory interfaces. Audio interfaces are not intended to have the capability of light sensors such as cameras to identify compactly located keys. Our analysis shows that effectively distinguishing the keys can require a fine localization precision level of keystroke sounds close to the range of microseconds. This work (1) explores the limits of audio interfaces to distinguish keystrokes, (2) proposes a μs-level customized signal processing and analysis-based keystroke tracking approach that takes into account the mechanical physics and imperfect measuring of keystroke sounds, (3) develops the first acoustic side-channel attack study on unconstrained keyboard inputs that are not purely alphabetic keys/words and do not necessarily follow known sequences in a given dictionary or training dataset, and (4) reveals the threats of non-line-of-sight keystroke sound tracking. Our results indicate that, without relying on vision sensors, attacks using limited-resolution audio interfaces can reveal unconstrained inputs from the keyboard with a fairly sharp and bendable "auditory eyesight."more » « less
-
Electroencephalography (EEG) based systems utilize machine learning (ML) and deep learning (DL) models in various applications such as seizure detection, emotion recognition, cognitive workload estimation, and brain-computer interface (BCI). However, the security and robustness of such intelligent systems under analog-domain threats have received limited attention. This paper presents the first demonstration of physical signal injection attacks on ML and DL models utilizing EEG data. We investigate how an adversary can degrade the performance of different models by non-invasively injecting signals into EEG recordings. We show that the attacks can mislead or manipulate the models and diminish the reliability of EEG-based systems. Overall, this research sheds light on the need for more trustworthy physiological-signal-based intelligent systems in the healthcare field and opens up avenues for future work.more » « less
-
As a new format of mobile application, mini-programs, which function within a larger app and are built with HTML, CSS, and JavaScript web technology, have become the way to do almost everything in China. Many researchers have done the ecosystem or developing study, while the permission problem has not been investigated yet. In this paper, we present our studies on the permission management of mini-programs and conduct a systematic study on 9 popular mobile host app ecosystems that host over 7 million mini-programs. After testing over 2,580 APIs, we extracted a common abstract model for mini-programs’ permission control and revealed six categories of potential security vulnerabilities due to improper permission management. It is alarming that the current popular mobile app ecosystems (i.e., host apps) under study have at least one security vulnerability due to the mini-programs’ improper permission management. We present the corresponding attack methods to dissect these potential weaknesses further to exploit the discovered vulnerabilities. To prove that the revealed vulnerabilities may cause severe consequences in real-world use, we show three kinds of attacks without privileges or cracking the host apps. We have responsibly disclosed the newly discovered vulnerabilities, and two CVEs were issued. Finally, we put forward systematic suggestions to strengthen the standardization of mini-programs.more » « less
An official website of the United States government

Full Text Available