Additive manufacturing (AM) as a disruptive technique has offered great potential to design and fabricate many metallic components for aerospace, medical, nuclear, and energy applications where parts have complex geometry. However, a limited number of materials suitable for the AM process is one of the shortcomings of this technique, in particular laser AM of copper (Cu) is challenging due to its high thermal conductivity and optical reflectivity, which requires higher heat input to melt powders. Fabrication of composites using AM is also very challenging and not easily achievable using the current powder bed technologies. Here, the feasibility to fabricate pure copper and copper-carbon nanotube (Cu-CNT) composites was investigated using laser powder bed fusion additive manufacturing (LPBF-AM), and 10 × 10 × 10 mm3 cubes of Cu and Cu-CNTs were made by applying a Design of Experiment (DoE) varying three parameters: laser power, laser speed, and hatch spacing at three levels. For both Cu and Cu-CNT samples, relative density above 90% and 80% were achieved, respectively. Density measurement was carried out three times for each sample, and the error was found to be less than 0.1%. Roughness measurement was performed on a 5 mm length of the sample to obtain statistically significant results. As-built Cu showed average surface roughness (Ra) below 20 µm; however, the surface of AM Cu-CNT samples showed roughness values as large as 1 mm. Due to its porous structure, the as-built Cu showed thermal conductivity of ~108 W/m·K and electrical conductivity of ~20% IACS (International Annealed Copper Standard) at room temperature, ~70% and ~80% lower than those of conventionally fabricated bulk Cu. Thermal conductivity and electrical conductivity were ~85 W/m·K and ~10% IACS for as-built Cu-CNT composites at room temperature. As-built Cu-CNTs showed higher thermal conductivity as compared to as-built Cu at a temperature range from 373 K to 873 K. Because of their large surface area, light weight, and large energy absorbing behavior, porous Cu and Cu-CNT materials can be used in electrodes, catalysts and their carriers, capacitors, heat exchangers, and heat and impact absorption.
more »
« less
A Novel Laser-Aided Machining and Polishing Process for Additive Manufacturing Materials with Multiple Endmill Emulating Scan Patterns
In additive manufacturing (AM), the surface roughness of the deposited parts remains significantly higher than the admissible range for most applications. Additionally, the surface topography of AM parts exhibits waviness profiles between tracks and layers. Therefore, post-processing is indispensable to improve surface quality. Laser-aided machining and polishing can be effective surface improvement processes that can be used due to their availability as the primary energy sources in many metal AM processes. While the initial roughness and waviness of the surface of most AM parts are very high, to achieve dimensional accuracy and minimize roughness, a high input energy density is required during machining and polishing processes although such high energy density may induce process defects and escalate the phenomenon of wavelength asperities. In this paper, we propose a systematic approach to eliminate waviness and reduce surface roughness with the combination of laser-aided machining, macro-polishing, and micro-polishing processes. While machining reduces the initial waviness, low energy density during polishing can minimize this further. The average roughness (Ra=1.11μm) achieved in this study with optimized process parameters for both machining and polishing demonstrates a greater than 97% reduction in roughness when compared to the as-built part.
more »
« less
- Award ID(s):
- 1937128
- PAR ID:
- 10454159
- Date Published:
- Journal Name:
- Applied Sciences
- Volume:
- 11
- Issue:
- 20
- ISSN:
- 2076-3417
- Page Range / eLocation ID:
- 9428
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Surface finishing in additive manufacturing (AM) is a technological bottleneck. The field of surface finishing of AM parts is vast because it not only focuses on roughness reduction in the hard-to-access internal surfaces but also includes the scope of adding coatings and sensors. Even though metal AM component is reaching the density and bulk microstructure at par or even better than conventionally produced components, adverse impact of surface roughness and imperfections is becoming the major obstruction. It is observed that external and internal surface roughness of AM components is a high probability cause of many unavoidable issues such as corrosion, incorrect tolerance estimations during the build stage, and the fatigue failure of parts before the expected life cycle. At present, AM field mainly focuses on improving and enhancing the internal and external surface roughness to pass the stringent qualification requirements for actual applications. To address these challenges, researchers worldwide are conducting many experiments and developing different surface finishing techniques. This paper reviews the state-of-the-art knowledge and processes of different surface finishing technology that can be applied to AM metal components. This article mainly highlights several liquid-based surfaces finishing approaches to develop promising surface microstructures on interior and exterior surfaces as a micromachining tool. The future of making strong and self-monitoring AM component requires broadening of surface finishing field and including advanced topics such as coatings and adding sensor technology. We also discuss new frontiers and the scope of future work in the surface finishing field to bring attention to related concerns and possibilities associated with making smart and strong AM components for twenty-first-century integrated engineering systems.more » « less
-
Direct digital manufacturing (DDM) is the creation of a physical part directly from a computer-aided design (CAD) model with minimal process planning and is typically applied to additive manufacturing (AM) processes to fabricate complex geometry. AM is preferred for DDM because of its minimal user input requirements; as a result, users can focus on exploiting other advantages of AM, such as the creation of intricate mechanisms that require no assembly after fabrication. Such assembly free mechanisms can be created using DDM during a single build process. In contrast, subtractive manufacturing (SM) enables the creation of higher strength parts that do not suffer from the material anisotropy inherent in AM. However, process planning for SM is more difficult than it is for AM due to geometric constraints imposed by the machining process; thus, the application of SM to the fabrication of assembly free mechanisms is challenging. This research describes a voxel-based computer-aided manufacturing (CAM) system that enables direct digital subtractive manufacturing (DDSM) of an assembly free mechanism. Process planning for SM involves voxel-by-voxel removal of material in the same way that an AM process consists of layer-by-layer addition of material. The voxelized CAM system minimizes user input by automatically generating toolpaths based on an analysis of accessible material to remove for a certain clearance in the mechanism's assembled state. The DDSM process is validated and compared to AM using case studies of the manufacture of two assembly free ball-in-socket mechanisms.more » « less
-
This paper presents a study of the grinding of three different grades of silicon carbide (SiC) under the same conditions. Surface topography is analyzed using coherent scanning interferometry and scanning electron microscopy. The study provides a baseline understanding of the process mechanics and targets effective selection of process parameters for grinding SiC optics with near optical level surface roughness, thus reducing the need for post-polishing. Samples are raster and spiral ground on conventional precision machines with metal and copper-resin bonded wheels under rough, medium, and finish grinding conditions. Material microstructure and grinding conditions affect attainable surface roughness. Local surface roughness of less than 3 nm RMS was attained in both chemical vapor deposition (CVD) and chemical vapor composite (CVC) SiC. The tool footprint is suitable for sub-aperture machining of a large freeform optics possibly without the need for surface finish correction by post-polishing. Subsurface damage will be assessed in Part 2 of this paper series.more » « less
-
Laser powder bed fusion (PBF‐LB) is an additive manufacturing (AM) technology for producing complex geometry parts. However, the high cost of post‐processing coarse as‐built surfaces drives the need to control surface roughness during fabrication. Prior studies have evaluated the relationship between process parameters and as‐built surface roughness, but they rely on forward models using trial‐and‐error, regression, and data‐driven methods based only on areal surface roughness parameters that neglect spatial surface characteristics. In contrast, this study introduces, for the first time, an inverse data‐centric framework that leverages machine learning algorithms and an experimental dataset of Inconel 718 as‐built surfaces to predict the PBF‐LB process parameters required to achieve a desired as‐built roughness. This inverse model shows a prediction accuracy of ≈80%, compared to 90% for the corresponding forward model. Additionally, it incorporates deterministic surface roughness parameters, which capture both height and spatial information, and significantly improves prediction accuracy compared to only using areal parameters. The inverse model provides a digital tool to process engineers that enables control of surface roughness by tailoring process parameters. Hence, it establishes a foundation for integrating surface roughness control into the digital thread of AM, thereby reducing the need for post‐processing and improving process efficiency.more » « less
An official website of the United States government

