skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AdaTest: Reinforcement Learning and Adaptive Sampling for On-chip Hardware Trojan Detection
This paper proposes AdaTest, a novel adaptive test pattern generation framework for efficient and reliable Hardware Trojan (HT) detection. HT is a backdoor attack that tampers with the design of victim integrated circuits (ICs). AdaTest improves the existing HT detection techniques in terms of scalability and accuracy of detecting smaller Trojans in the presence of noise and variations. To achieve high trigger coverage, AdaTest leverages Reinforcement Learning (RL) to produce a diverse set of test inputs. Particularly, we progressively generate test vectors with high ‘reward’ values in an iterative manner. In each iteration, the test set is evaluated and adaptively expanded as needed. Furthermore, AdaTest integrates adaptive sampling to prioritize test samples that provide more information for HT detection, thus reducing the number of samples while improving the samples’ quality for faster exploration. We develop AdaTest with a Software/Hardware co-design principle and provide an optimized on-chip architecture solution. AdaTest’s architecture minimizes the hardware overhead in two ways: (i) Deploying circuit emulation on programmable hardware to accelerate reward evaluation of the test input; (ii) Pipelining each computation stage in AdaTest by automatically constructing auxiliary circuit for test input generation, reward evaluation, and adaptive sampling. We evaluate AdaTest’s performance on various HT benchmarks and compare it with two prior works that use logic testing for HT detection. Experimental results show that AdaTest engenders up to two orders of test generation speedup and two orders of test set size reduction compared to the prior works while achieving the same level or higher Trojan detection rate.  more » « less
Award ID(s):
2016737
PAR ID:
10382343
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM Transactions on Embedded Computing Systems
ISSN:
1539-9087
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hardware Trojans are serious threat to security and reliability of computing systems. It is hard to detect these malicious implants using traditional validation methods since an adversary is likely to hide them under rare trigger conditions. While existing statistical test generation methods are promising for Trojan detection, they are not suitable for activating extremely rare trigger conditions in stealthy Trojans. To address the fundamental challenge of activating rare triggers, we propose a new test generation paradigm by mapping trigger activation problem to clique cover problem. The basic idea is to utilize a satisfiability solver to construct a test corresponding to each maximal clique. This paper makes two fundamental contributions: 1) it proves that the trigger activation problem can be mapped to clique cover problem, 2) it proposes an efficient test generation algorithm to activate trigger conditions by repeated maximal clique sampling. Experimental results demonstrate that our approach is scalable and it outperforms state-of-the-art approaches by several orders-of-magnitude in detecting stealthy Trojans. 
    more » « less
  2. null (Ed.)
    Due to globalized semiconductor supply chain, there is an increasing risk of exposing System-on-Chip (SoC) designs to malicious implants, popularly known as hardware Trojans. Unfortunately, traditional simulation-based validation using millions of test vectors is unsuitable for detecting stealthy Trojans with extremely rare trigger conditions due to exponential input space complexity of modern SoCs. There is a critical need to develop efficient Trojan detection techniques to ensure trustworthy SoCs. While there are promising test generation approaches, they have serious limitations in terms of scalability and detection accuracy. In this paper, we propose a novel logic testing approach for Trojan detection using an effective combination of testability analysis and reinforcement learning. Specifically, this paper makes three important contributions. 1) Unlike existing approaches, we utilize both controllability and observability analysis along with rareness of signals to significantly improve the trigger coverage. 2) Utilization of reinforcement learning considerably reduces the test generation time without sacrificing the test quality. 3) Experimental results demonstrate that our approach can drastically improve both trigger coverage (14.5% on average) and test generation time (6.5 times on average) compared to state-of-the-art techniques. 
    more » « less
  3. Due to the globalization of Integrated Circuit supply chain, hardware Trojans and the attacks that can trigger them have become an important security issue. One type of hardware Trojans leverages the “don’t care transitions” in Finite-state Machines (FSMs) of hardware designs. In this article, we present a symbolic approach to detecting don’t care transitions and the hidden Trojans. Our detection approach works at both register-transfer level (RTL) and gate level, does not require a golden design, and works in three stages. In the first stage, it explores the reachable states. In the second stage, it performs an approximate analysis to find the don’t care transitions and any discrepancies in the register values or output lines due to don’t care transitions. The second stage can be used for both predicting don’t care triggered Trojans and for guiding don’t care aware reachability analysis. In the third stage, it performs a state-space exploration from reachable states that have incoming don’t care transitions to explore the Trojan payload and to find behavioral discrepancies with respect to what has been observed in the first stage. We also present a pruning technique based on the reachability of FSM states. We present a methodology that leverages both RTL and gate-level for soundness and efficiency. Specifically, we show that don’t care transitions and Trojans that leverage them must be detected at the gate-level, i.e., after synthesis has been performed, for soundness. However, under specific conditions, Trojan payload exploration can be performed more efficiently at RTL. Additionally, the modular design of our approach also provides a fast Trojan prediction method even at the gate level when the reachable states of the FSM is known a priori . Evaluation of our approach on a set of benchmarks from OpenCores and TrustHub and using gate-level representation generated by two synthesis tools, YOSYS and Synopsis Design Compiler (SDC), shows that our approach is both efficient (up to 10× speedup w.r.t. no pruning) and precise (0% false positives both at RTL and gate-level netlist) in detecting don’t care transitions and the Trojans that leverage them. Additionally, the total analysis time can achieve up to 1.62× (using YOSYS) and 1.92× (using SDC) speedup when synthesis preserves the FSM structure, the foundry is trusted, and the Trojan detection is performed at RTL. 
    more » « less
  4. null (Ed.)
    Reliability and trustworthiness are dominant factors in designing System-on-Chips (SoCs) for a variety of applications. Malicious implants, such as hardware Trojans, can lead to undesired information leakage or system malfunction. To ensure trustworthy computing, it is critical to develop efficient Trojan detection techniques. While existing delay-based side-channel analysis is promising, it is not effective due to two fundamental limitations: (i) The difference in path delay between the golden design and Trojan inserted design is negligible compared with environmental noise and process variations. (ii) Existing approaches rely on manually crafted rules for test generation, and require a large number of simulations, making it impractical for industrial designs. In this paper, we propose a novel test generation method using reinforcement learning for delay-based Trojan detection. This paper makes three important contributions. 1) Unlike existing methods that rely on the delay difference of a few gates, our proposed approach utilizes critical path analysis to generate test vectors that can maximize the side-channel sensitivity. 2) To the best of our knowledge, our approach is the first attempt in applying reinforcement learning for efficient test generation to detect Trojans using delay-based analysis. 3) Our experimental results demonstrate that our method can significantly improve both side-channel sensitivity (59% on average) and test generation time (17x on average) compared to state-of-the-art test generation techniques. 
    more » « less
  5. Side-channel analysis is widely used for hardware Trojan detection in integrated circuits by analyzing various side-channel signatures, such as timing, power and path delay. Existing delay-based side-channel analysis techniques have two major bottlenecks: (i) they are not suitable in detecting Trojans since the delay difference between the golden design and a Trojan inserted design is negligible, and (ii) they are not effective in creating robust delay signatures due to reliance on random and ATPG based test patterns. In this paper, we propose an efficient test generation technique to detect Trojans using delay-based side channel analysis. This paper makes two important contributions. (1) We propose an automated test generation algorithm to produce test patterns that are likely to activate trigger conditions, and change critical paths. Compared to existing approaches where delay difference is solely based on extra gates from a small Trojan, the change of critical paths by our approach will lead to significant difference in path delay. (2) We propose a fast and efficient reordering technique to maximize the delay deviation between the golden design and Trojan inserted design. Experimental results demonstrate that our approach significantly outperforms state-of-the-art approaches that rely on ATPG or random test patterns for delay-based side-channel analysis. 
    more » « less