skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adaptive sequential predictive maintenance policy with nonperiodic inspection for hard failures
Abstract This paper proposes a novel adaptive maintenance policy for degrading systems subject to hard failure. Compared with traditional condition‐based maintenance policies, the proposed predictive maintenance policy makes maintenance decisions adaptively based on model prognostic results. The prognostic model is continuously updated based on newly inspected data. The inspection times and preventive maintenance activities are scheduled online in a sequential manner based on the most current prediction of system reliability. A computationally efficient optimization scheme is proposed for obtaining optimal maintenance parameters. The proposed policy is demonstrated and its performance is evaluated through extensive simulations.  more » « less
Award ID(s):
2027425
PAR ID:
10454254
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Quality and Reliability Engineering International
Volume:
37
Issue:
3
ISSN:
0748-8017
Page Range / eLocation ID:
p. 1173-1185
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Imaging data-based prognostic models focus on using an asset’s degradation images to predict its time to failure (TTF). Most image-based prognostic models have two common limitations. First, they require degradation images to be complete (i.e., images are observed continuously and regularly over time). Second, they usually employ an unsupervised dimension reduction method to extract low-dimensional features and then use the features for TTF prediction. Because unsupervised dimension reduction is conducted on the degradation images without the involvement of TTFs, there is no guarantee that the extracted features are effective for failure time prediction. To address these challenges, this article develops a supervised tensor dimension reduction-based prognostic model. The model first proposes a supervised dimension reduction method for tensor data. It uses historical TTFs to guide the detection of a tensor subspace to extract low-dimensional features from high-dimensional incomplete degradation imaging data. Next, the extracted features are used to construct a prognostic model based on (log)-location-scale regression. An optimization algorithm for parameter estimation is proposed, and analytical solutions are discussed. Simulated data and a real-world data set are used to validate the performance of the proposed model. History: Bianca Maria Colosimo served as the senior editor for this article Funding: This work was supported by National Science Foundation [2229245]. Data Ethics & Reproducibility Note: The code capsule is available on Code Ocean at https://github.com/czhou9/Code-and-Data-for-IJDS and in the e-Companion to this article (available at https://doi.org/10.1287/ijds.2022.x022 ). 
    more » « less
  2. Manufacturers have faced an increasing need for the development of predictive models that predict mechanical failures and the remaining useful life (RUL) of manufacturing systems or components. Classical model-based or physics-based prognostics often require an in-depth physical understanding of the system of interest to develop closed-form mathematical models. However, prior knowledge of system behavior is not always available, especially for complex manufacturing systems and processes. To complement model-based prognostics, data-driven methods have been increasingly applied to machinery prognostics and maintenance management, transforming legacy manufacturing systems into smart manufacturing systems with artificial intelligence. While previous research has demonstrated the effectiveness of data-driven methods, most of these prognostic methods are based on classical machine learning techniques, such as artificial neural networks (ANNs) and support vector regression (SVR). With the rapid advancement in artificial intelligence, various machine learning algorithms have been developed and widely applied in many engineering fields. The objective of this research is to introduce a random forests (RFs)-based prognostic method for tool wear prediction as well as compare the performance of RFs with feed-forward back propagation (FFBP) ANNs and SVR. Specifically, the performance of FFBP ANNs, SVR, and RFs are compared using an experimental data collected from 315 milling tests. Experimental results have shown that RFs can generate more accurate predictions than FFBP ANNs with a single hidden layer and SVR. 
    more » « less
  3. ABSTRACT Batteries are prevalent energy storage devices, and their failures can cause huge losses such as the shutdown of entire systems. Therefore, the prognostic health management of batteries to increase their availability is highly desirable. This work focuses on improving the serviceability of batteries for wireless sensor networks (WSNs) deployed in remote and hard‐to‐reach places. We propose an active management strategy such that the batteries in a network will attain similar end‐of‐life times, in addition to lifetime extension. The fundamental idea is to adaptively adjust the node quality‐of‐service (QoS) to actively manage their degradation processes, while ensuring a minimum level of network QoS. The framework first executes a prognostic algorithm that can predict the remaining useful life (RUL) of a battery, given its assigned node‐level QoS. A Bayesian optimization framework with an augmented Lagrangian method has been adopted to efficiently solve the developed black‐box constrained optimization problem. A Matlab Simulink model based on a truss bridge structure health monitoring network is built considering the battery aging and temperature effects. Compared with the benchmark models, the proposed strategy demonstrates a more extended network lifespan and uniform working time ratio. 
    more » « less
  4. Abstract We introduce a novel digital twin framework for predictive maintenance of physical systems with long term operations. Using monitoring tire health as an application, we show how the digital twin framework is used to enhance automotive safety and efficiency, while overcoming technical challenges using a three-step approach. Firstly, for managing the data complexity over a long operation span, we employ data reduction techniques to concisely represent physical tires using historical performance and usage data. Relying on this data, for fast real-time prediction, we train a transformer-based model offline on our concise dataset to predict future tire health over time, represented as Remaining Casing Potential (RCP). Based on our architecture, our model quantifies both epistemic and aleatoric uncertainty, providing reliable confidence intervals around predicted RCP. Secondly, we incorporate real-time data by updating the predictive model in the digital twin framework, ensuring its accuracy throughout its life span with the aid of hybrid modeling and the use of a discrepancy function. Thirdly, to assist decision making in predictive maintenance, we implement a Tire State Decision Algorithm, which strategically determines the optimal timing for tire replacement based on RCP forecasted by our transformer model. This three-step approach ensures that our digital twin not only accurately predicts the health of a system, but also continually refines its digital representation and makes predictive maintenance decisions for removal from service. Our proposed digital twin framework embodies a physical system accurately and leverages big data and machine learning for predictive maintenance, model update and decision making. 
    more » « less
  5. Condition-based maintenance of multi-component systems is a prevalent engineering problem due to its effectiveness in reducing the operational and maintenance costs of the system. However, developing the exact optimal maintenance decisions for the large multi-component system is computationally challenging, even not feasible, due to the exponential growth in system state and action space size with the number of components in the system. To address the scalability issue in CBM of large multi-component systems, we propose a Component-Wise Markov Decision Process(CW-MDP) and an Adjusted Component-Wise Markov Decision Process (ACW-MDP) to obtain an approximation of the optimal system-level CBM decision policy for large systems with heterogeneous components. We propose using an extended single-component action space to model the impact of system-level setup cost on a component-level solution. The theoretical gap between the proposed approach and system-level optima is also derived. Additionally, theoretical convergence and the relationship between ACW-MDP and CW-MDP are derived. The study further shows extensive numerical studies to demonstrate the effectiveness of component-wise solutions for solving large multi-component systems. 
    more » « less