skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reconstructing Western Boundary Current Stability in the North Atlantic Ocean for the Past 700 Kyr From Globorotalia truncatulinoides Coiling Ratios
Abstract Down‐core changes in the coiling direction ofGloborotalia truncatulinoidesin the northwestern subtropical Atlantic (KNR140‐37PC and Ocean Drilling Program Sites 1063, 1059, 1056, 1058) provide a tracer for the hydrographic conditions in the western boundary current over the past 700 kyr (Marine Isotope Stage, MIS, 1–17). A consistent association between percentG. truncatulinoides(sinistral) abundances, total test counts, and bulk sediment CaCO3content is established by MIS 11 suggesting a response to ocean‐atmosphere interactions during the mid Brunhes event. Commencing with MIS 11, interglacial maxima are associated with high total test counts and either distinct sinistral test minima (MIS 9e, 11c) or maxima (MIS 1, 5e, 7a). High sinistral test abundances with relatively high test counts is similar to the late Holocene relationship at the study sites. Low sinistral test abundances despite high test counts means that coiling ratios are dominated by dextral forms. We interpret this pattern to indicate more intense flow in the subtropical gyre either via the western boundary current drawing toward the gyre center, or a more northern influence of the North Equatorial and Antilles Currents. This suggests that the western boundary current may have been more intense during MIS 11c and MIS 9e then during MIS 7a, MIS 5e, and MIS 1 consistent with climate warm anomalies in northern Europe at these times. Regardless of the mechanism, the observation that minima and maxima in sinistral test abundances are prolonged at these times indicates that the western gyre boundary remained stable during relative warm intervals.  more » « less
Award ID(s):
1757840
PAR ID:
10454284
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Paleoceanography and Paleoclimatology
Volume:
35
Issue:
12
ISSN:
2572-4517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. International Ocean Discovery Program (IODP) Expedition 374 sailed to the Ross Sea in 2018 to reconstruct paleoenvironments, track the history of key water masses, and assess model simulations that show warm-water incursions from the Southern Ocean led to the loss of marine-based Antarctic ice sheets during past interglacials. IODP Site U1523 (water depth 828 m) is located at the continental shelf break, northeast of Pennell Bank on the southeastern flank of Iselin Bank, where it lies beneath the Antarctic Slope Current (ASC). This site is sensitive to warm-water incursions from the Ross Sea Gyre and modified Circumpolar Deep Water (mCDW) today and during times of past warming climate. Multiple incursions of subpolar or temperate planktic foraminifera taxa occurred at Site U1523 after 3.8 Ma and prior to ∼ 1.82 Ma. Many of these warm-water taxa incursions likely represent interglacials of the latest Early Pliocene and Early Pleistocene, including Marine Isotope Stage (MIS) Gi7 to Gi3 (∼ 3.72–3.65 Ma), and Early Pleistocene MIS 91 or 90 (∼ 2.34–2.32 Ma) and MIS 77–67 (∼ 2.03–1.83 Ma) and suggest warmer-than-present conditions and less ice cover in the Ross Sea. However, a moderately resolved age model based on four key events prohibits us from precisely correlating with Marine Isotope Stages established by the LR04 Stack; therefore, these correlations are best estimates. Diatom-rich intervals during the latest Pliocene at Site U1523 include evidence of anomalously warm conditions based on the presence of subtropical and temperate planktic foraminiferal species in what likely correlates with interglacial MIS G17 (∼ 2.95 Ma), and a second interval that likely correlates with MIS KM3 (∼ 3.16 Ma) of the mid-Piacenzian Warm Period. Collectively, these multiple incursions of warmer-water planktic foraminifera provide evidence for polar amplification during super-interglacials of the Pliocene and Early Pleistocene. Higher abundances of planktic and benthic foraminifera during the Mid- to Late Pleistocene associated with interglacials of the MIS 37–31 interval (∼ 1.23–1.07 Ma), MIS 25 (∼ 0.95 Ma), MIS 15 (∼ 0.60 Ma), and MIS 6–5e transition (∼ 0.133–0.126 Ma) also indicate a reduced ice shelf and relatively warm conditions, including multiple warmer interglacials during the Mid-Pleistocene Transition (MPT). A decrease in sedimentation rate after ∼ 1.78 Ma is followed by a major change in benthic foraminiferal biofacies marked by a decrease in Globocassidulina subglobosa and a decrease in mud (< 63 µm) after ∼ 1.5 Ma. Subsequent dominance of Trifarina earlandi biofacies beginning during MIS 15 (∼ 600 ka) indicate progressive strengthening of the Antarctic Slope Current along the shelf edge of the Ross Sea during the mid to Late Pleistocene. A sharp increase in foraminiferal fragmentation after the MPT (∼ 900 ka) and variable abundances of T. earlandi indicate higher productivity, a stronger but variable ASC during interglacials, and/or corrosive waters, suggesting changes in water masses entering (mCDW) and exiting (High Salinity Shelf Water or Dense Shelf Water) the Ross Sea since the MPT. 
    more » « less
  2. Abstract A full‐spectrum characterization of past interglacial climate is a necessary prerequisite for the detection and attribution of climate changes during the current interglacial. Here we present a speleothem record of Asian summer monsoon (ASM) during Marine Isotope Stage (MIS) 11 interglacial (MIS 11c), from Yongxing cave, China. The record's unprecedented chronologic constraints and decadal‐scale temporal resolution allow a precise and direct comparison of ASM between the MIS 11c and the Holocene. Our data suggest that orbital‐centennial patterns of ASM were remarkably similar during both interglacial, including their pacing and structure. Notably, a multi‐millennial stronger monsoon late in MIS 11c, the “Late‐MIS 11c shift,” is similar to the Late Holocene strengthening of the ASM, the “2‐Kyr shift.” Thus, the multicentennial ASM weakening at the end of the Late‐MIS 11c shift could imply that the current century‐long ASM waning trend may persist into the future, if only natural forcings are considered. 
    more » « less
  3. Abstract Accurate reconstructions of export production in the Subantarctic Zone of the Southern Ocean are crucial for understanding the carbon cycle during Earth's past. However, due to the strong bottom water circulation of the Antarctic Circumpolar Current, sediment redistribution complicates age‐model‐derived bulk mass accumulation rates (BMAR). Here, we assess export production and its drivers over the past ∼1.4 Myr near the Drake Passage entrance using BMAR of biogenic barium, organic carbon, biogenic opal, calcium carbonate, and iron from sediment core PS97/093‐2, all of which are corrected for lateral sediment redistribution (corr‐BMAR). To quantify this correction, we explore the relationship between sortable silt as a bottom current strength proxy and230Th‐derived focusing factors as indicators of lateral redistribution of sediments, respectively. Our findings highlight peak Fe input prior and during glacials of the Mid‐Pleistocene Transition (MPT), likely driven by enhanced Patagonian weathering. The carbonate record indicates increased deep‐ocean corrosivity after around 1 Ma ago and displays a shift in the accumulation pattern post‐MPT, with only isolated peaks in some peak interglacials. The high carbonate values during MIS 11 likely relate toGephyrocapsacoccolithophore propagation, preceded and followed by prolonged carbonate dissolution periods, possibly linked to the Mid‐Brunhes Event. After the MPT, productivity proxies respond to glacial and interglacial intensity, with maxima found during MIS 16, MIS 11, MIS 5, and the Holocene, while minima occur during MIS 15–12. Our findings offer insights into long‐term productivity dynamics and their relationship to important climatic events over the past 1.4 Myr. 
    more » « less
  4. Abstract High‐resolution records from past interglacial climates help constrain future responses to global warming, yet are rare. Here, we produce seasonally resolved climate records from subarctic‐Canada using micron‐scale measurements of oxygen isotopes (δ18O) in speleothems with apparent annual growth bands from three interglacial periods—Marine Isotope Stages (MIS) 11, 9, and 5e. We find 3‰ lower δ18O values during MIS 11 than MIS 5e, despite MIS 11 likely being warmer. We explore controls on high‐latitude speleothem δ18O and suggest low MIS 11 δ18O values reflect greater contribution of cold‐season precipitation to dripwater from longer annual ground thaw durations. Other potential influences include changes in precipitation source and/or increased fraction of cold‐season precipitation from diminished sea ice in MIS 11. Our study highlights the potential for high‐latitude speleothems to yield detailed isotopic records of Northern Hemisphere interglacial climates beyond the reach of Greenland ice cores and offers a framework for interpreting them. 
    more » « less
  5. Abstract Adverse weather has been shown to be spatially and temporally variable across high‐latitude locations. The current study provides a unique investigation of limited surface visibility time periods at five coastal Greenland locations from 1979 to 2018 and identifies the coincident adverse weather, as well as the local and large‐scale atmospheric conditions during limited surface visibility time periods. Locations on the east coast of Greenland have the largest percentage of hours with limited visibility each month with maxima during February. Western and southern coastal locations have fewer occurrences of limited visibility. Warm‐season maxima are present in the northern locations, while warm‐season minima occur at all other locations. Fog is reported during each month at all five stations, however, a substantial increase of hours occurs at the northern and eastern stations during the typical melt season on Greenland. There is a seasonal difference in the percent of limited visibility hours linked to precipitation with a minimum in the warm season and maximum across the cold season. Limited visibility attributed to precipitation generally has the largest percentage of hours each month except for the northern and eastern locations during the melt season. The location and number of cyclonic circulations, as well as the spatial scale of troughs, across northeastern Canada and the North Atlantic Ocean greatly influence the adverse weather linked to prolonged limited surface visibility events. Limited visibility events at Thule, Greenland during both the warm and cold seasons are largely influenced by the presence and intensity of a cyclone over northeastern Canada. At Danmarkshavn, Greenland limited visibility events in both seasons generally have a cyclone positioned to the east, an area of higher pressure over Greenland and a cyclone positioned to the west of Greenland. 
    more » « less