Abstract We report on the largest open‐shell graphenic bilayer and also the first example of triply negatively charged radical π‐dimer. Upon three‐electron reduction, bilayer nanographene fragment molecule (C96H24Ar6)2(Ar=2,6‐dimethylphenyl) (12) was transformed to a triply negatively charged species123.−, which has been characterized by single‐crystal X‐ray diffraction, electron paramagnetic resonance (EPR) spectroscopy and magnetic properties on a superconducting quantum interference device (SQUID).123.−features a 96‐center‐3‐electron (96c/3e) pancake bond with a doublet ground state, which can be thermally excited to a quartet state. It consists of 34 π‐fused rings with 96 conjugatedsp2carbon atoms. Spin frustration is observed with the frustration parameterf>31.8 at low temperatures in123.−, which indicates graphene upon reduction doping may behave as a quantum spin liquid.
more »
« less
Mutually Reinforced Polymer–Graphene Bilayer Membranes for Energy‐Efficient Acoustic Transduction
Abstract Graphene holds promise for thin, ultralightweight, and high‐performance nanoelectromechanical transducers. However, graphene‐only devices are limited in size due to fatigue and fracture of suspended graphene membranes. Here, a lightweight, flexible, transparent, and conductive bilayer composite of polyetherimide and single‐layer graphene is prepared and suspended on the centimeter scale with an unprecedentedly high aspect ratio of 105. The coupling of the two components leads to mutual reinforcement and creates an ultrastrong membrane that supports 30 000 times its own weight. Upon electromechanical actuation, the membrane pushes a massive amount of air and generates high‐quality acoustic sound. The energy efficiency is≈10–100 times better than state‐of‐the‐art electrodynamic speakers. The bilayer membrane's combined properties of electrical conductivity, mechanical strength, optical transparency, thermal stability, and chemical resistance will promote applications in electronics, mechanics, and optics.
more »
« less
- Award ID(s):
- 1752611
- PAR ID:
- 10454313
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 33
- Issue:
- 2
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Measurement of cell metabolism in moderate-throughput to high-throughput organ-on-chip (OOC) systems would expand the range of data collected for studying drug effects or disease in physiologically relevant tissue models. However, current measurement approaches rely on fluorescent imaging or colorimetric assays that are focused on endpoints, require labels or added substrates, and lack real-time data. Here, we integrated optical-based oxygen sensors in a high-throughput OOC platform and developed an approach for monitoring cell metabolic activity in an array of membrane bilayer devices. Each membrane bilayer device supported a culture of human renal proximal tubule epithelial cells on a porous membrane suspended between two microchannels and exposed to controlled, unidirectional perfusion and physiologically relevant shear stress for several days. For the first time, we measured changes in oxygen in a membrane bilayer format and used a finite element analysis model to estimate cell oxygen consumption rates (OCRs), allowing comparison with OCRs from other cell culture systems. Finally, we demonstrated label-free detection of metabolic shifts in human renal proximal tubule cells following exposure to FCCP, a drug known for increasing cell oxygen consumption, as well as oligomycin and antimycin A, drugs known for decreasing cell oxygen consumption. The capability to measure cell OCRs and detect metabolic shifts in an array of membrane bilayer devices contained within an industry standard microtiter plate format will be valuable for analyzing flow-responsive and physiologically complex tissues during drug development and disease research.more » « less
-
Using hexagonal boron nitride (hBN) as a substrate for graphene has shown faster carrier cooling which makes it ideal for high‐power graphene‐based devices. However, the effect of using boron‐isotope‐enriched hBN has not been explored. Herein, femtosecond pump‐probe spectroscopy is utilized to measure and compare the time dynamics of photo‐excited carriers in graphene‐hBN heterostructures for hBN with the natural distribution of boron isotopes (20%10B and 80%11B) and hBN enriched to 100%10B and11B. The carriers cool down faster for systems with isotopically pure hBN substrates by a factor of ≈1.7 times. This difference in relaxation times arises from the interfacial coupling between carriers in graphene and the hBN phonon modes. The results show that the boron isotopic purity of the hBN substrate can help to reduce the hot phonon bottleneck that limits the cooling in graphene devices.more » « less
-
Abstract Current potentiometric sensing methods are limited to detecting nitrate at parts-per-billion (sub-micromolar) concentrations, and there are no existing potentiometric chemical sensors with ultralow detection limits below the parts-per-trillion (picomolar) level. To address these challenges, we integrate interdigital graphene ion-sensitive field-effect transistors (ISFETs) with a nitrate ion-sensitive membrane (ISM). The work aims to maximize nitrate ion transport through the nitrate ISM, while achieving high device transconductance by evaluating graphene layer thickness, optimizing channel width-to-length ratio (RWL), and enlarging total sensing area. The captured nitrate ions by the nitrate ISM induce surface potential changes that are transduced into electrical signals by graphene, manifested as the Dirac point shifts. The device exhibits Nernst response behavior under ultralow concentrations, achieving a sensitivity of 28 mV/decade and establishing a record low limit of detection of 0.041 ppt (4.8 × 10−13M). Additionally, the sensor showed a wide linear detection range from 0.1 ppt (1.2 × 10−12M) to 100 ppm (1.2 × 10−3M). Furthermore, successful detection of nitrate in tap and snow water was demonstrated with high accuracy, indicating promising applications to drinking water safety and environmental water quality control.more » « less
-
Abstract Atomically thin, few‐layered membranes of oxides show unique physical and chemical properties compared to their bulk forms. Manganese oxide (Mn3O4) membranes are exfoliated from the naturally occurring mineral Hausmannite and used to make flexible, high‐performance nanogenerators (NGs). An enhanced power density in the membrane NG is observed with the best‐performing device showing a power density of 7.99 mW m−2compared to 1.04 µW m−2in bulk Mn3O4. A sensitivity of 108 mV kPa−1for applied forces <10 N in the membrane NG is observed. The improved performance of these NGs is attributed to enhanced flexoelectric response in a few layers of Mn3O4. Using first‐principles calculations, the flexoelectric coefficients of monolayer and bilayer Mn3O4are found to be 50–100 times larger than other 2D transition metal dichalcogenides (TMDCs). Using a model based on classical beam theory, an increasing activation of the bending mode with decreasing thickness of the oxide membranes is observed, which in turn leads to a large flexoelectric response. As a proof‐of‐concept, flexible NGs using exfoliated Mn3O4membranes are made and used in self‐powered paper‐based devices. This research paves the way for the exploration of few‐layered membranes of other centrosymmetric oxides for application as energy harvesters.more » « less