skip to main content


Title: Machine Learning Predictions of Block Copolymer Self‐Assembly
Abstract

Directed self‐assembly of block copolymers is a key enabler for nanofabrication of devices with sub‐10 nm feature sizes, allowing patterning far below the resolution limit of conventional photolithography. Among all the process steps involved in block copolymer self‐assembly, solvent annealing plays a dominant role in determining the film morphology and pattern quality, yet the interplay of the multiple parameters during solvent annealing, including the initial thickness, swelling, time, and solvent ratio, makes it difficult to predict and control the resultant self‐assembled pattern. Here, machine learning tools are applied to analyze the solvent annealing process and predict the effect of process parameters on morphology and defectivity. Two neural networks are constructed and trained, yielding accurate prediction of the final morphology in agreement with experimental data. A ridge regression model is constructed to identify the critical parameters that determine the quality of line/space patterns. These results illustrate the potential of machine learning to inform nanomanufacturing processes.

 
more » « less
NSF-PAR ID:
10454333
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
32
Issue:
52
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Surface segregation in blended polymer films has attracted much interest in fundamental research as well as for practical applications. A variety of methodologies have been proposed for controlling surface segregation. They often require long annealing times, however, to achieve thermodynamic equilibrium. Here, a strategy and proof‐of‐principle experiments are described to control surface segregation of thin block‐copolymer (BCP) layers on top of a homopolymer in a single casting step from blended BCP/homopolymer solutions. The surface coverage by the minor constituent BCP (2–10 wt%) is accomplished despite almost identical surface energies of BCP and homopolymer constituents. Immersing this casted solution into water for nonsolvent induced phase separation (NIPS), a nonequilibrium process, affords solidified bilayer ultrafiltration membranes composed of a thin porous surface layer of self‐assembled BCP atop an asymmetric porous homopolymer substructure. Key to successful BCP surface segregation is the choice of a binary solvent system based on careful considerations of solvent surface energies and polymer‐solvent interaction parameters. Furthermore, stabilizing the BCP micellar structure by a divalent metal additive is also essential. The approach provides a cost‐effective method for fabricating bilayer‐type asymmetric ultrafiltration membranes with uniform BCP self‐assembly based selective top surface pore layers in a single casting step.

     
    more » « less
  2. The parameter space of CNT forest synthesis is vast and multidimensional, making experimental and/or numerical exploration of the synthesis prohibitive. We propose a more practical approach to explore the synthesis-process relationships of CNT forests using machine learning (ML) algorithms to infer the underlying complex physical processes. Currently, no such ML model linking CNT forest morphology to synthesis parameters has been demonstrated. In the current work, we use a physics-based numerical model to generate CNT forest morphology images with known synthesis parameters to train such a ML algorithm. The CNT forest synthesis variables of CNT diameter and CNT number densities are varied to generate a total of 12 distinct CNT forest classes. Images of the resultant CNT forests at different time steps during the growth and self-assembly process are then used as the training dataset. Based on the CNT forest structural morphology, multiple single and combined histogram-based texture descriptors are used as features to build a random forest (RF) classifier to predict class labels based on correlation of CNT forest physical attributes with the growth parameters. The machine learning model achieved an accuracy of up to 83.5% on predicting the synthesis conditions of CNT number density and diameter. These results are the first step towards rapidly characterizing CNT forest attributes using machine learning. Identifying the relevant process-structure interactions for the CNT forests using physics-based simulations and machine learning could rapidly advance the design, development, and adoption of CNT forest applications with varied morphologies and properties 
    more » « less
  3. ABSTRACT

    Herein, we report the design and synthesis of a block copolymer (BCP) with a high Flory–Huggins interaction parameter to access 10 nm feature sizes for potential lithographic applications. The investigated BCP is poly[(2‐methyl‐2‐oxazoline)‐block‐styrene] (PMeOx‐b‐PS), where the PMeOx segment functions as a hydrophilic segment. Two BCPs with different molecular weights were prepared using PMeOx as macroinitiator for copper(0) mediated controlled radical polymerization. The thin film self‐assembly of the obtained PMeOx‐b‐PS was performed by solvent annealing and investigated by atomic force microscopy. Both polymers formed PMeOx cylinders in a PS matrix with an average cylinder diameter of 10.5 nm. Additionally, the ability of the PMeOx domains to selectively degrade under ultraviolet irradiation was explored. It was shown that scission of the PMeOx block does occur selectively, and furthermore that the degraded domains can be removed while leaving the PS matrix intact. By combining synthetic accessibility, small feature sizes, and a selectively cleavable domain, this new BCP system holds significant promise as a lithographic mask for patterning surfaces with high precision. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1349–1357

     
    more » « less
  4. Abstract The freeform generation of active electronics can impart advanced optical, computational, or sensing capabilities to an otherwise passive construct by overcoming the geometrical and mechanical dichotomies between conventional electronics manufacturing technologies and a broad range of three-dimensional (3D) systems. Previous work has demonstrated the capability to entirely 3D print active electronics such as photodetectors and light-emitting diodes by leveraging an evaporation-driven multi-scale 3D printing approach. However, the evaporative patterning process is highly sensitive to print parameters such as concentration and ink composition. The assembly process is governed by the multiphase interactions between solutes, solvents, and the microenvironment. The process is susceptible to environmental perturbations and instability, which can cause unexpected deviation from targeted print patterns. The ability to print consistently is particularly important for the printing of active electronics, which require the integration of multiple functional layers. Here we demonstrate a synergistic integration of a microfluidics-driven multi-scale 3D printer with a machine learning algorithm that can precisely tune colloidal ink composition and classify complex internal features. Specifically, the microfluidic-driven 3D printer can rapidly modulate ink composition, such as concentration and solvent-to-cosolvent ratio, to explore multi-dimensional parameter space. The integration of the printer with an image-processing algorithm and a support vector machine-guided classification model enables automated, in situ pattern classification. We envision that such integration will provide valuable insights in understanding the complex evaporative-driven assembly process and ultimately enable an autonomous optimisation of printing parameters that can robustly adapt to unexpected perturbations. 
    more » « less
  5. Abstract

    Superconducting quantum metamaterials are expected to exhibit a variety of novel properties, but have been a major challenge to prepare as a result of the lack of appropriate synthetic routes to high‐quality materials. Here, the discovery of synthesis routes to block copolymer (BCP) self‐assembly‐directed niobium nitrides and carbonitrides is described. The resulting materials exhibit unusual structure retention even at temperatures as high as 1000 °C and resulting critical temperature,Tc, values comparable to their bulk analogues. Applying the concepts of soft matter self‐assembly, it is demonstrated that a series of four different BCP‐directed mesostructured superconductors are accessible from a single triblock terpolymer. Resulting materials display a mesostructure‐dependentTcwithout substantial variation of the XRD‐measured lattice parameters. Finally, field‐dependent magnetization measurements of a sample with double‐gyroid morphology show abrupt jumps comparable in overall behavior to flux avalanches. Results suggest a fruitful convergence of soft and hard condensed matter science.

     
    more » « less