skip to main content

Title: Surface Segregation and Self‐Assembly of Block‐Copolymer Separation Layers on Top of Homopolymer Substructures in Asymmetric Ultrafiltration Membranes from a Single Casting Step

Surface segregation in blended polymer films has attracted much interest in fundamental research as well as for practical applications. A variety of methodologies have been proposed for controlling surface segregation. They often require long annealing times, however, to achieve thermodynamic equilibrium. Here, a strategy and proof‐of‐principle experiments are described to control surface segregation of thin block‐copolymer (BCP) layers on top of a homopolymer in a single casting step from blended BCP/homopolymer solutions. The surface coverage by the minor constituent BCP (2–10 wt%) is accomplished despite almost identical surface energies of BCP and homopolymer constituents. Immersing this casted solution into water for nonsolvent induced phase separation (NIPS), a nonequilibrium process, affords solidified bilayer ultrafiltration membranes composed of a thin porous surface layer of self‐assembled BCP atop an asymmetric porous homopolymer substructure. Key to successful BCP surface segregation is the choice of a binary solvent system based on careful considerations of solvent surface energies and polymer‐solvent interaction parameters. Furthermore, stabilizing the BCP micellar structure by a divalent metal additive is also essential. The approach provides a cost‐effective method for fabricating bilayer‐type asymmetric ultrafiltration membranes with uniform BCP self‐assembly based selective top surface pore layers in a single casting step.

more » « less
Award ID(s):
1707836 1719875
Author(s) / Creator(s):
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Porous polymer-derived membranes are useful for applications ranging from filtration and separation technologies to energy storage and conversion. Combining block copolymer (BCP) self-assembly with the industrially scalable, non-equilibrium phase inversion technique (SNIPS) yields membranes comprising periodically ordered top surface structures supported by asymmetric, hierarchical substructures that together overcome performance tradeoffs typically faced by materials derived from equilibrium approaches. This review first reports on recent advances in understanding the top surface structural evolution of a model SNIPS-derived system during standard membrane formation. Subsequently, the application of SNIPS to multicomponent systems is described, enabling pore size modulation, chemical modification, and transformation to non-polymeric materials classes without compromising the structural features that define SNIPS membranes. Perspectives on future directions of both single-component and multicomponent membrane materials are provided. This points to a rich and fertile ground for the study of fundamental as well as applied problems using non-equilibrium-derived asymmetric porous materials with tunable chemistry, composition, and structure. 
    more » « less
  2. null (Ed.)

    Synthetic lipid membranes are self-assembled biomolecular double layers designed to approximate the properties of living cell membranes. These membranes are employed as model systems for studying the interactions of cellular envelopes with the surrounding environment in a controlled platform. They are constructed by dispersing amphiphilic lipids into a combination of immiscible fluids enabling the biomolecules to self-assemble into ordered sheets, or monolayers at the oil-water interface. The adhesion of two opposing monolayer sheets forms the membrane, or the double layer. The mechanical properties of these synthetic membranes often differ from biological ones mainly due to the presence of residual solvent in between the leaflets. In fact, the double layer compresses in response to externally applied electrical field with an intensity that varies depending on the solvent present. While typically viewed as a drawback associated with their assembly, in this work the elasticity of the double layer is utilized to further quantify complex biophysical phenomena. The adsorption of charged molecules on the surface of a lipid bilayer is a key property to decipher biomolecule interactions at the interface of the cell membrane, as well as to develop effective antimicrobial peptides and similar membrane-active molecules. This adsorption generates a difference in the boundary potentials on either side of the membrane which may be tracked through electrophysiology. The soft synthetic membranes produced in the laboratory compress when exposed to an electric field. Tracking the minimum membrane capacitance allows for quantifying when the intrinsic electric field produced by the asymmetry is properly compensated by the supplied transmembrane voltage. The technique adopted in this work is the intramembrane field compensation (IFC). This technique focuses on the current generated by the bilayer in response to a sinusoidal voltage with a DC component, VDC. Briefly, the output sinusoidal current is divided into its harmonics and the second harmonic equals zero when VDC compensates the internal electric field. In this work, we apply the IFC technique to droplet interface bilayers (DIB) enabling the development of a biological sensor. A certain membrane elasticity is needed for accurate measurements and is tuned through the solvent selection. The asymmetric DIBs are formed, and an automated PID-controlled IFC design is implemented to rapidly track and compensate the membrane asymmetry. The closed loop system continuously reads the current and generates the corresponding voltage until the second harmonic is abated. This research describes the development and optimization of a biological sensor and examines how varying the structure of the synthetic membrane influences its capabilities for detecting membrane-environment interactions. This platform may be applied towards studying the interactions of membrane-active molecules and developing models for the associated phenomena to enhance their design.

    more » « less
  3. Abstract

    Materials combining an asymmetric pore structure with mesopores everywhere enable high surface area accessibility and fast transport, making them attractive for e.g., energy conversion and storage applications. Block copolymer (BCP)/inorganic precursor co‐assembly combined with non‐solvent induced phase separation (NIPS) provides a route to materials in which a mesoporous top surface layer merges into an asymmetric support with graded porosity along the film normal and mesopores throughout. Here, the co‐assembly and non‐solvent‐induced phase separation (CNIPS) of poly(isoprene)‐b‐poly(styrene)‐b‐poly(4‐vinylpyridine) (ISV) triblock terpolymer and titanium dioxide (TiO2) sol‐gel nanoparticlesare reported. Heat‐treatment in air results in free‐standing asymmetric porous TiO2. Further thermal processing in ammonia results in free‐standing asymmetric porous titanium nitride (TiN). processing changes alter structural membrane characteristics is demonstrated. Changing the CNIPS evaporation time results in various membrane cross‐sections ( finger‐like to sponge‐like). Oxide and nitride material composition, crystallinity, and porosity are tuned by varying thermal processing conditions. Finally, thermal processing condition effects are probed on phase‐pure asymmetric nitride membrane behavior using cyclic voltammetry to elucidate their influence, e.g., on specific capacitance. Results provide further insights into improving asymmetric and porous materials for applications including energy conversion and storage, separation, and catalysis and motivate a further expansion of CNIPS to other (in)organic materials.

    more » « less
  4. Abstract

    The assembly of peptide and peptide‐inspired building blocks into functional, well‐defined, multi‐length scale materials represents an exciting, rapidly expanding research field that bridges the principles of polymer science and engineering with a tremendous breadth of biomolecular interactions. The advantageous features of peptides, including their biocompatibility, functional diversity, and high purity, are complemented by the breadth of potential applications that may arise from their resultant structures and assemblies. Applications in biology (tissue scaffolding and drug conjugation), electronics (electron and/or ion‐conduction), and membranes (ion capture and ultrafiltration) represent a few of many examples where such biologically rich materials hold potential for enabling new routes to enhanced materials performance. Achieving successful solution and interfacial assembly techniques for peptides and other peptidomimetic materials requires obtaining a deep understanding of their design principles and limitations, as well as their amenability to structure formation when subjected to a variety of environmental conditions, such as pH, solvent, and temperature, to which such assembly methods may be exquisitely sensitive. This review especially focuses on mechanisms and the product of oligo‐ and polypeptide assembly, often resulting in the formation of extended, wire‐like structures obtained by solution methods, with inclusion of peptoid‐based structures and the complementary roles of polymerizations and step‐by‐step synthetic methods. Moreover, we describe relationships between naturally occurring peptide‐based structures, such asGeobacter pili, that in turn inspire self‐assembly of peptide‐based structures, composites with polymer materials, and assemblies therefrom.

    more » « less
  5. Abstract

    Membranes are prepared by self‐assembly and casting of 5 and 13 wt% poly(styrene‐b‐butadiene‐b‐styrene) (PS‐b‐PB‐b‐PS) copolymers solutions in different solvents, followed by immersion in water or ethanol. By controlling the solution‐casting gap, porous films of 50 and 1 µm thickness are obtained. A gradient of increasing pore size is generated as the distance from the surface increased. An ordered porous surface layer with continuous nanochannels can be observed. Its formation is investigated, by using time‐resolved grazing incident small angle X‐ray scattering, electron microscopy, and rheology, suggesting a strong effect of the air–solution interface on the morphology formation. The thin PS‐b‐PB‐b‐PS ordered films are modified, by promoting the photolytic addition of thioglycolic acid to the polybutadiene groups, adding chemical functionality and specific transport characteristics on the preformed nanochannels, without sacrificing the membrane morphology. Photomodification increases fivefold the water permeance to around 2 L m−2h−1bar−1, compared to that of the unmodified one. A rejection of 74% is measured for methyl orange in water. The membranes fabrication with tailored nanochannels and chemical functionalities can be demonstrated using relatively lower cost block copolymers. Casting on porous polyacrylonitrile supports makes the membranes even more scalable and competitive in large scale.

    more » « less