skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tracking and parameter identification for model reference adaptive control
Summary We provide barrier Lyapunov functions for model reference adaptive control algorithms, allowing us to prove robustness in the input‐to‐state stability framework and to compute rates of exponential convergence of the tracking and parameter identification errors to zero. Our results ensure identification of all entries of the unknown weight and control effectiveness matrices. We provide easily checked sufficient conditions for our relaxed persistency of excitation conditions to hold. Our illustrative numerical example demonstrates the performance of the control methods.  more » « less
Award ID(s):
1711299
PAR ID:
10454427
Author(s) / Creator(s):
 
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Robust and Nonlinear Control
Volume:
30
Issue:
4
ISSN:
1049-8923
Page Range / eLocation ID:
p. 1582-1606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary For decades, $ N $-of-1 experiments, where a unit serves as its own control and treatment in different time windows, have been used in certain medical contexts. However, due to effects that accumulate over long time windows and interventions that have complex evolution, a lack of robust inference tools has limited the widespread applicability of such $ N $-of-1 designs. This work combines techniques from experimental design in causal inference and system identification from control theory to provide such an inference framework. We derive a model of the dynamic interference effect that arises in linear time-invariant dynamical systems. We show that a family of causal estimands analogous to those studied in potential outcomes are estimable via a standard estimator derived from the method of moments. We derive formulae for higher moments of this estimator and describe conditions under which $ N $-of-1 designs may provide faster ways to estimate the effects of interventions in dynamical systems. We also provide conditions under which our estimator is asymptotically normal and derive valid confidence intervals for this setting. 
    more » « less
  2. In this paper, we examine the high-probability finite-time theoretical guarantees of the least squares method for system identification of switched linear systems with process noise and without control input. We consider two scenarios: one in which the switching is i.i.d., and the other in which the switching is according to a Markov process. We provide concentration inequalities using a martingale-type argument to bound the identification error at each mode, and we use concentration lemmas for the switching signal. Our bound is in terms of state dimension, trajectory length, finite-time gramian, and properties of the switching signal distribution. We then provide simulations to demonstrate the accuracy of the identification. Additionally, we show that the empirical convergence rate is consistent with our theoretical bound. 
    more » « less
  3. Abstract Summarypystablemotifs is a Python 3 library for analyzing Boolean networks. Its non-heuristic and exhaustive attractor identification algorithm was previously presented in Rozum et al. (2021). Here, we illustrate its performance improvements over similar methods and discuss how it uses outputs of the attractor identification process to drive a system to one of its attractors from any initial state. We implement six attractor control algorithms, five of which are new in this work. By design, these algorithms can return different control strategies, allowing for synergistic use. We also give a brief overview of the other tools implemented in pystablemotifs. Availability and implementationThe source code is on GitHub at https://github.com/jcrozum/pystablemotifs/. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  4. Control variables provide an important means of controlling for endogeneity in econometric models with nonseparable and/or multidimensional heterogeneity. We allow for discrete instruments, giving identification results under a variety of restrictions on the way the endogenous variable and the control variables affect the outcome. We consider many structural objects of interest, such as average or quantile treatment effects. We illustrate our results with an empirical application to Engel curve estimation 
    more » « less
  5. Abstract Over the past few decades, several data‐driven methods have been developed for identifying a model that accurately describes the process dynamics. Lately, sparse identification of nonlinear dynamics (SINDy) has delivered promising results for various nonlinear processes. However, at any instance of plant‐model mismatch or process upset, retraining the model using SINDy is computationally expensive and cannot guarantee to catch up with rapidly changing dynamics. Hence, we propose operable adaptive sparse identification of systems (OASIS) framework that extends the capabilities of SINDy for accurate, automatic, and adaptive approximation of process models. First, we use SINDy to obtain multiple models from historical data for varying input settings. Next, using these models and their training data, we build a deep neural network that is incorporated in a model predictive control framework for closed‐loop operation. We demonstrate the OASIS methodology on the identification and control of a continuous stirred tank reactor. 
    more » « less