This paper presents four data-driven system models for a magnetically controlled swimmer. The models were derived directly from experimental data, and the accuracy of the models was experimentally demonstrated. Our previous study successfully implemented two non-model-based control algorithms for 3D path-following using PID and model reference adaptive controller (MRAC). This paper focuses on system identification using only experimental data and a model-based control strategy. Four system models were derived: (1) a physical estimation model, (2, 3) Sparse Identification of Nonlinear Dynamics (SINDY), linear system and nonlinear system, and (4) multilayer perceptron (MLP). All four system models were implemented as an estimator of a multi-step Kalman filter. The maximum required sensing interval was increased from 180 ms to 420 ms and the respective tracking error decreased from 9 mm to 4.6 mm. Finally, a Model Predictive Controller (MPC) implementing the linear SINDY model was tested for 3D path-following and shown to be computationally efficient and offers performances comparable to other control methods.
more »
« less
Operable adaptive sparse identification of systems: Application to chemical processes
Abstract Over the past few decades, several data‐driven methods have been developed for identifying a model that accurately describes the process dynamics. Lately, sparse identification of nonlinear dynamics (SINDy) has delivered promising results for various nonlinear processes. However, at any instance of plant‐model mismatch or process upset, retraining the model using SINDy is computationally expensive and cannot guarantee to catch up with rapidly changing dynamics. Hence, we propose operable adaptive sparse identification of systems (OASIS) framework that extends the capabilities of SINDy for accurate, automatic, and adaptive approximation of process models. First, we use SINDy to obtain multiple models from historical data for varying input settings. Next, using these models and their training data, we build a deep neural network that is incorporated in a model predictive control framework for closed‐loop operation. We demonstrate the OASIS methodology on the identification and control of a continuous stirred tank reactor.
more »
« less
- Award ID(s):
- 1804407
- PAR ID:
- 10455504
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- AIChE Journal
- Volume:
- 66
- Issue:
- 11
- ISSN:
- 0001-1541
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Alber, Mark (Ed.)Biological systems exhibit complex dynamics that differential equations can often adeptly represent. Ordinary differential equation models are widespread; until recently their construction has required extensive prior knowledge of the system. Machine learning methods offer alternative means of model construction: differential equation models can be learnt from data via model discovery using sparse identification of nonlinear dynamics (SINDy). However, SINDy struggles with realistic levels of biological noise and is limited in its ability to incorporate prior knowledge of the system. We propose a data-driven framework for model discovery and model selection using hybrid dynamical systems: partial models containing missing terms. Neural networks are used to approximate the unknown dynamics of a system, enabling the denoising of the data while simultaneously learning the latent dynamics. Simulations from the fitted neural network are then used to infer models using sparse regression. We show, via model selection, that model discovery using hybrid dynamical systems outperforms alternative approaches. We find it possible to infer models correctly up to high levels of biological noise of different types. We demonstrate the potential to learn models from sparse, noisy data in application to a canonical cell state transition using data derived from single-cell transcriptomics. Overall, this approach provides a practical framework for model discovery in biology in cases where data are noisy and sparse, of particular utility when the underlying biological mechanisms are partially but incompletely known.more » « less
-
Abstract This study presents a data-driven framework for modeling complex systems, with a specific emphasis on traffic modeling. Traditional methods in traffic modeling often rely on assumptions regarding vehicle interactions. Our approach comprises two steps: first, utilizing information- theoretic (IT) tools to identify interaction directions and candidate variables thus eliminating assumptions, and second, employing the sparse identification of nonlinear systems (SINDy) tool to establish functional relationships. We validate the framework’s efficacy using synthetic data from two distinct traffic models, while considering measurement noise. Results show that IT tools can reliably detect directions of interaction as well as instances of no interaction. SINDy proves instrumental in creating precise functional relationships and determining coefficients in tested models. The innovation of our framework lies in its ability to use data-driven approach to model traffic dynamics without relying on assumptions, thus offering applications in various complex systems beyond traffic.more » « less
-
Machine learning presents opportunities to improve the scale-specific accuracy of mechanistic models in a data-driven manner. Here we demonstrate the use of a machine learning technique called Sparse Identification of Nonlinear Dynamics (SINDy) to improve a simple mechanistic model of algal growth. Time-series measurements of the microalga Chlorella Vulgaris were generated under controlled photobioreactor conditions at the University of Technology Sydney. A simple mechanistic growth model based on intensity of light and temperature was integrated over time and compared to the time-series data. While the mechanistic model broadly captured the overall growth trend, discrepancies remained between the model and data due to the model's simplicity and non-ideal behavior of real-world measurement. SINDy was applied to model the residual error by identifying an error derivative correction term. Addition of this SINDy-informed error dynamics term shows improvement to model accuracy while maintaining interpretability of the underlying mechanistic framework. This work demonstrates the potential for machine learning techniques like SINDy to aid simple mechanistic models in scale-specific predictive accuracy.more » « less
-
IntroductionThe moment quantities associated with the nonlinear Schrödinger equation offer important insights into the evolution dynamics of such dispersive wave partial differential equation (PDE) models. The effective dynamics of the moment quantities are amenable to both analytical and numerical treatments. MethodsIn this paper, we present a data-driven approach associated with the “Sparse Identification of Nonlinear Dynamics” (SINDy) to capture the evolution behaviors of such moment quantities numerically. Results and DiscussionOur method is applied first to some well-known closed systems of ordinary differential equations (ODEs) which describe the evolution dynamics of relevant moment quantities. Our examples are, progressively, of increasing complexity and our findings explore different choices within the SINDy library. We also consider the potential discovery of coordinate transformations that lead to moment system closure. Finally, we extend considerations to settings where a closed analytical form of the moment dynamics is not available.more » « less