The phase field method provides a simple mass conserving method for solving two-phase immiscible - incompressible Navier-Stokes Equations. The relative ease in implementing this method compared to other interface reconstruction methods, coupled with its conservativeness and boundedness makes it an attractive alternative. We implement the method in a parallel structured multi-block generalized coordinate finite volume solver using a collocated grid arrangement within the framework of the fractional-step method. The discretization uses a second-order central difference method for both the Navier-Stokes and the phase field equations. A TVD-based averaging technique is used for calculating density at cell faces in the pressure correction step to handle high-density ratios. The simulation framework is verified in standard test cases: Zalesak Disk, a droplet in shear flow, Solitary Wave Runup, Rayleigh Taylor Instability, and the Dam Break Problem. A second-order rate of convergence and excellent phase volume conservation is observed.
more »
« less
A note on the accuracy of the generalized‐α scheme for the incompressible Navier‐Stokes equations
Abstract We investigate the temporal accuracy of two generalized‐ schemes for the incompressible Navier‐Stokes equations. In a widely‐adopted approach, the pressure is collocated at the time steptn + 1while the remainder of the Navier‐Stokes equations is discretized following the generalized‐ scheme. That scheme has been claimed to besecond‐order accurate in time. We developed a suite of numerical code using inf‐sup stable higher‐order non‐uniform rational B‐spline (NURBS) elements for spatial discretization. In doing so, we are able to achieve high spatial accuracy and to investigate asymptotic temporal convergence behavior. Numerical evidence suggests that onlyfirst‐order accuracyis achieved, at least for the pressure, in this aforesaid temporal discretization approach. On the other hand, evaluating the pressure at the intermediate time step recovers second‐order accuracy, and the numerical implementation is simplified. We recommend this second approach as the generalized‐ scheme of choice when integrating the incompressible Navier‐Stokes equations.
more »
« less
- Award ID(s):
- 1663671
- PAR ID:
- 10454460
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- International Journal for Numerical Methods in Engineering
- Volume:
- 122
- Issue:
- 2
- ISSN:
- 0029-5981
- Page Range / eLocation ID:
- p. 638-651
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We construct a numerical scheme based on the scalar auxiliary variable (SAV) approach in time and the MAC discretization in space for the Cahn–Hilliard–Navier–Stokes phase- field model, prove its energy stability, and carry out error analysis for the corresponding Cahn–Hilliard–Stokes model only. The scheme is linear, second-order, unconditionally energy stable and can be implemented very efficiently. We establish second-order error estimates both in time and space for phase-field variable, chemical potential, velocity and pressure in different discrete norms for the Cahn–Hilliard–Stokes phase-field model. We also provide numerical experiments to verify our theoretical results and demonstrate the robustness and accuracy of our scheme.more » « less
-
We construct new first- and second-order pressure correctionschemes using the scalar auxiliary variable approach for the Navier-Stokes equations. These schemes are linear, decoupled and only require solving a sequence of Poisson type equations at each time step. Furthermore, they are unconditionally energy stable. We also establish rigorous error estimates in the two dimensional case for the velocity and pressure approximation of the first-order scheme without any condition on the time step.more » « less
-
Hypo-elastoplasticity is a framework suitable for modeling the mechanics of many hard materials that have small elastic deformation and large plastic deformation. In laboratory tests for these materials the Cauchy stress is often in quasi-static equilibrium. Rycroft et al. discovered a mathematical correspondence between this physical system and the incompressible Navier–Stokes equations, and developed a projection method similar to Chorin's projection method (1968) for incompressible Newtonian fluids. Here, we improve the original projection method to simulate quasi-static hypo-elastoplasticity, by making three improvements. First, drawing inspiration from the second-order projection method for incompressible Newtonian fluids, we formulate a second-order in time numerical scheme for quasi-static hypo-elastoplasticity. Second, we implement a finite element method for solving the elliptic equations in the projection step, which provides both numerical benefits and flexibility. Third, we develop an adaptive global time-stepping scheme, which can compute accurate solutions in fewer timesteps. Our numerical tests use an example physical model of a bulk metallic glass based on the shear transformation zone theory, but the numerical methods can be applied to any elastoplastic material.more » « less
-
In this paper we construct a novel discretization of the Cahn-Hilliard equation coupled with the Navier-Stokes equations. The Cahn-Hilliard equation models the separation of a binary mixture. We construct a very simple time integration scheme for simulating the Cahn-Hilliard equation, which is based on splitting the fourth-order equation into two second-order Helmholtz equations. We combine the Cahn-Hilliard equation with the Navier-Stokes equations to simulate phase separation in a two-phase fluid flow in two dimensions. The scheme conserves mass and momentum and exhibits consistency between mass and momentum, allowing it to be used with large density ratios. We introduce a novel discretization of the surface tension force from the phase-field variable that has finite support around the transition region. The model has a parameter that allows it to transition from a smoothed continuum surface force to a fully sharp interface formulation. We show that our method achieves second-order accuracy, and we compare our method to previous work in a variety of experiments.more » « less