skip to main content


Title: A note on the accuracy of the generalized‐α scheme for the incompressible Navier‐Stokes equations
Abstract

We investigate the temporal accuracy of two generalized‐ schemes for the incompressible Navier‐Stokes equations. In a widely‐adopted approach, the pressure is collocated at the time steptn + 1while the remainder of the Navier‐Stokes equations is discretized following the generalized‐ scheme. That scheme has been claimed to besecond‐order accurate in time. We developed a suite of numerical code using inf‐sup stable higher‐order non‐uniform rational B‐spline (NURBS) elements for spatial discretization. In doing so, we are able to achieve high spatial accuracy and to investigate asymptotic temporal convergence behavior. Numerical evidence suggests that onlyfirst‐order accuracyis achieved, at least for the pressure, in this aforesaid temporal discretization approach. On the other hand, evaluating the pressure at the intermediate time step recovers second‐order accuracy, and the numerical implementation is simplified. We recommend this second approach as the generalized‐ scheme of choice when integrating the incompressible Navier‐Stokes equations.

 
more » « less
Award ID(s):
1663671
NSF-PAR ID:
10454460
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal for Numerical Methods in Engineering
Volume:
122
Issue:
2
ISSN:
0029-5981
Page Range / eLocation ID:
p. 638-651
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We introduce, analyze, and test an interpolation operator designed for use with continuous data assimilation (DA) of evolution equations that are discretized spatially with the finite element method. The interpolant is constructed as an approximation of theL2projection operator onto piecewise constant functions on a coarse mesh, but which allows nudging to be done completely at the linear algebraic level, independent of the rest of the discretization, with a diagonal matrix that is simple to construct; it can even completely remove the need for explicit construction of a coarse mesh. We prove the interpolation operator has sufficient stability and accuracy properties, and we apply it to algorithms for both fluid transport DA and incompressible Navier–Stokes DA. For both applications we prove the DA solutions with arbitrary initial conditions converge to the true solution (up to discretization error) exponentially fast in time, and are thus long‐time accurate. Results of several numerical tests are given, which both illustrate the theory and demonstrate its usefulness on practical problems.

     
    more » « less
  2. The phase field method provides a simple mass conserving method for solving two-phase immiscible - incompressible Navier-Stokes Equations. The relative ease in implementing this method compared to other interface reconstruction methods, coupled with its conservativeness and boundedness makes it an attractive alternative. We implement the method in a parallel structured multi-block generalized coordinate finite volume solver using a collocated grid arrangement within the framework of the fractional-step method. The discretization uses a second-order central difference method for both the Navier-Stokes and the phase field equations. A TVD-based averaging technique is used for calculating density at cell faces in the pressure correction step to handle high-density ratios. The simulation framework is verified in standard test cases: Zalesak Disk, a droplet in shear flow, Solitary Wave Runup, Rayleigh Taylor Instability, and the Dam Break Problem. A second-order rate of convergence and excellent phase volume conservation is observed. 
    more » « less
  3. Abstract

    This work describes a detailed mathematical procedure in relation to a novel third‐order WENO scheme for the inviscid term of a system of nonlinear equations in the generalized grid system. The scheme developed minimizes the linear and nonlinear sources of dissipation error associated with the classical fifth‐order WENO scheme. The former is minimized by optimizing the resolving efficiency of the scheme whereas the latter is minimized by fixing the accuracy at the second‐order critical point via redefining the nonlinear weights. Moreover, the spectral property of second‐order viscous derivative, approximated by the single and double applications of the standard fourth‐order central finite difference scheme, is presented. The two‐dimensional Euler and Navier–Stokes equations in the generalized grids are mainly pursued. For the robustness in terms of capturing discontinuous and smooth structures, particularly two problems, which are difficult to handle in Cartesian grids, are chosen for discussion. The first one deals with a supersonic shock hitting the circular cylinder and generating all the possible flow inconsistencies. The other one deals with a subsonic flow over a circular cylinder at the incompressible limit. The numerical results are found to be in good agreement with the experimental data.

     
    more » « less
  4. null (Ed.)
    We construct a numerical scheme based on the scalar auxiliary variable (SAV) approach in time and the MAC discretization in space for the Cahn–Hilliard–Navier–Stokes phase- field model, prove its energy stability, and carry out error analysis for the corresponding Cahn–Hilliard–Stokes model only. The scheme is linear, second-order, unconditionally energy stable and can be implemented very efficiently. We establish second-order error estimates both in time and space for phase-field variable, chemical potential, velocity and pressure in different discrete norms for the Cahn–Hilliard–Stokes phase-field model. We also provide numerical experiments to verify our theoretical results and demonstrate the robustness and accuracy of our scheme. 
    more » « less
  5. Abstract

    The one‐leg, two‐step time discretization proposed by Dahlquist, Liniger and Nevanlinna is second order and variable step G‐stable. G‐stability for systems of ordinary differential equations (ODEs) corrresponds to unconditional, long time energy stability when applied to the Navier–Stokes equations (NSEs). In this report, we analyze the method of Dahlquist, Liniger and Nevanlinna as a variable step, time discretization of the Navier–Stokes equations. We prove that the kinetic energy is bounded for variable time‐steps, show that the method is second‐order accurate, characterize its numerical dissipation and prove error estimates. The theoretical results are illustrated by several numerical tests.

     
    more » « less