skip to main content


Title: On a SAV-MAC scheme for the Cahn–Hilliard–Navier–Stokes phase-field model and its error analysis for the corresponding Cahn–Hilliard–Stokes case
We construct a numerical scheme based on the scalar auxiliary variable (SAV) approach in time and the MAC discretization in space for the Cahn–Hilliard–Navier–Stokes phase- field model, prove its energy stability, and carry out error analysis for the corresponding Cahn–Hilliard–Stokes model only. The scheme is linear, second-order, unconditionally energy stable and can be implemented very efficiently. We establish second-order error estimates both in time and space for phase-field variable, chemical potential, velocity and pressure in different discrete norms for the Cahn–Hilliard–Stokes phase-field model. We also provide numerical experiments to verify our theoretical results and demonstrate the robustness and accuracy of our scheme.  more » « less
Award ID(s):
2012585
NSF-PAR ID:
10225298
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Mathematical Models and Methods in Applied Sciences
Volume:
30
Issue:
12
ISSN:
0218-2025
Page Range / eLocation ID:
2263 to 2297
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a fully-coupled, implicit-in-time framework for solving a thermodynamically-consistent Cahn-Hilliard Navier-Stokes system that models two-phase flows. In this work, we extend the block iterative method presented in Khanwale et al. [Simulating two-phase flows with thermodynamically consistent energy stable Cahn-Hilliard Navier-Stokes equations on parallel adaptive octree based meshes, J. Comput. Phys. (2020)], to a fully-coupled, provably second-order accurate scheme in time, while maintaining energy-stability. The new method requires fewer matrix assemblies in each Newton iteration resulting in faster solution time. The method is based on a fully-implicit Crank-Nicolson scheme in time and a pressure stabilization for an equal order Galerkin formulation. That is, we use a conforming continuous Galerkin (cG) finite element method in space equipped with a residual-based variational multiscale (RBVMS) procedure to stabilize the pressure. We deploy this approach on a massively parallel numerical implementation using parallel octree-based adaptive meshes. We present comprehensive numerical experiments showing detailed comparisons with results from the literature for canonical cases, including the single bubble rise, Rayleigh-Taylor instability, and lid-driven cavity flow problems. We analyze in detail the scaling of our numerical implementation. 
    more » « less
  2. In this paper, we consider the numerical approximation for a phase field model of the coupled two-phase free flow and two-phase porous media flow. This model consists of Cahn– Hilliard–Navier–Stokes equations in the free flow region and Cahn–Hilliard–Darcy equations in the porous media region that are coupled by seven interface conditions. The coupled system is decoupled based on the interface conditions and the solution values on the interface from the previous time step. A fully discretized scheme with finite elements for the spatial discretization is developed to solve the decoupled system. In order to deal with the difficulties arising from the interface conditions, the decoupled scheme needs to be constructed appropriately for the interface terms, and a modified discrete energy is introduced with an interface component. Furthermore, the scheme is linearized and energy stable. Hence, at each time step one need only solve a linear elliptic system for each of the two decoupled equations. Stability of the model and the proposed method is rigorously proved. Numerical experiments are presented to illustrate the features of the proposed numerical method and verify the theoretical conclusions. 
    more » « less
  3. Abstract

    We propose and analyze a second order accurate in time, energy stable numerical scheme for the strongly anisotropic Cahn–Hilliard system, in which a biharmonic regularization has to be introduced to make the equation well‐posed. A convexity analysis on the anisotropic interfacial energy is necessary to overcome an essential difficulty associated with its highly nonlinear and singular nature. The second order backward differentiation formula temporal approximation is applied, combined with Fourier pseudo‐spectral spatial discretization. The nonlinear surface energy part is updated by an explicit extrapolation formula. Meanwhile, the energy stability analysis is enforced by the fact that all the second order functional derivatives of the energy stay uniformly bounded by a global constant. A Douglas‐Dupont type regularization is added to stabilize the numerical scheme, and a careful estimate ensures a modified energy stability with a uniform constraint for the regularization parameter . In turn, the combination with an appropriate treatment for the nonlinear double well potential terms leads to a weakly nonlinear scheme. More importantly, such an energy stability is in terms of the interfacial energy with respect to the original phase variable, which enables us to derive an optimal rate convergence analysis.

     
    more » « less
  4. Abstract

    We propose two mass and heat energy conservative, unconditionally stable, decoupled numerical algorithms for solving the Cahn–Hilliard–Navier–Stokes–Darcy–Boussinesq system that models thermal convection of two‐phase flows in superposed free flow and porous media. The schemes totally decouple the computation of the Cahn–Hilliard equation, the Darcy equations, the heat equation, the Navier–Stokes equations at each time step, and thus significantly reducing the computational cost. We rigorously show that the schemes are conservative and energy‐law preserving. Numerical results are presented to demonstrate the accuracy and stability of the algorithms.

     
    more » « less
  5. Abstract

    In this paper, we establish the fully decoupled numerical methods by utilizing scalar auxiliary variable approach for solving Cahn–Hilliard–Darcy system. We exploit the operator splitting technique to decouple the coupled system and Galerkin finite element method in space to construct the fully discrete formulation. The developed numerical methods have the features of second order accuracy, totally decoupling, linearization, and unconditional energy stability. The unconditionally stability of the two proposed decoupled numerical schemes are rigorously proved. Abundant numerical results are reported to verify the accuracy and effectiveness of proposed numerical methods.

     
    more » « less