skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nitrogen flux into metabolites and microcystins changes in response to different nitrogen sources in Microcystis aeruginosaNIES ‐843
Summary The over‐enrichment of nitrogen (N) in the environment has contributed to severe and recurring harmful cyanobacterial blooms, especially by the non‐N2‐fixingMicrocystisspp. N chemical speciation influences cyanobacterial growth, persistence and the production of the hepatotoxin microcystin, but the physiological mechanisms to explain these observations remain unresolved. Stable‐labelled isotopes and metabolomics were employed to address the influence of nitrate, ammonium, and urea on cellular physiology and production of microcystins inMicrocystis aeruginosaNIES‐843. Global metabolic changes were driven by both N speciation and diel cycling. Tracing15N‐labelled nitrate, ammonium, and urea through the metabolome revealed N uptake, regardless of species, was linked to C assimilation. The production of amino acids, like arginine, and other N‐rich compounds corresponded with greater turnover of microcystins in cells grown on urea compared to nitrate and ammonium. However,15N was incorporated into microcystins from all N sources. The differences in N flux were attributed to the energetic efficiency of growth on each N source. While N in general plays an important role in sustaining biomass, these data show that N‐speciation induces physiological changes that culminate in differences in global metabolism, cellular microcystin quotas and congener composition.  more » « less
Award ID(s):
1840715
PAR ID:
10454540
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Environmental Microbiology
Volume:
22
Issue:
6
ISSN:
1462-2912
Format(s):
Medium: X Size: p. 2419-2431
Size(s):
p. 2419-2431
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Chemically reduced nitrogen forms are increasing in aquatic systems and beginning to reach concentrations not previously measured. Despite this, little research has examined the potential of reduced nitrogen forms to encourage excess nitrogen storage and promote algal bloom longevity compared to oxidised forms.A 2‐week field, pulse‐application experiment was carried out using 1,100‐L plastic limnocorrals to examine cyanobacterial community response to three nitrogen forms, including nitrate, ammonium, and urea (added as 600 µg N/L). Cell pigments and counts were used to calculate cell‐specific pigment concentrations, and cell‐associated microcystin concentrations were also measured to examine toxin response to a shift in nitrogen source.Results showed that, upon nitrogen introduction, extracellular nitrogen quickly decreased in accordance with an increase in cellular phycocyanin 72 hr after fertilisation. Ammonium and urea treatments had more phycocyanin/cell than nitrate or control treatments at 72 hr. After 72 hr, phycocyanin content quickly decreased, consistent with the use of nitrogen from phycobiliproteins. Despite the decrease in light‐harvesting pigments, the total number of cyanobacterial cells increased in the ammonium and urea treatments after 2 weeks. Cyanobacterial particulate toxin (microcystin) quotas were not affected by nitrogen additions.Results show that reduced nitrogen forms encourage greater nitrogen storage as pigments and increase bloom longevity compared to oxidised forms.Findings support previous studies that suggest reduced nitrogen forms encourage greater cell density and algal bloom persistence. Results further point to excess nitrogen storage as another mechanism that allows cyanobacteria to dominate freshwater systems despite variable environmental conditions. 
    more » « less
  2. Rudi, Knut (Ed.)
    ABSTRACT Cyanobacterial harmful algal blooms (cyanoHABs) degrade freshwater ecosystems globally. Microcystis aeruginosa often dominates cyanoHABs and produces microcystin (MC), a class of hepatotoxins that poses threats to human and animal health. Microcystin toxicity is influenced by distinct structural elements across a diversity of related molecules encoded by variant mcy operons. However, the composition and distribution of mcy operon variants in natural blooms remain poorly understood. Here, we characterized the variant composition of mcy genes in western Lake Erie Microcystis blooms from 2014 and 2018. Sampling was conducted across several spatial and temporal scales, including different bloom phases within 2014, extensive spatial coverage on the same day (2018), and frequent, autonomous sampling over a 2-week period (2018). Mapping of metagenomic and metatranscriptomic sequences to reference sequences revealed three Microcystis mcy genotypes: complete (all genes present [ mcyA–J ]), partial (truncated mcyA , complete mcyBC , and missing mcyD–J ), and absent (no mcy genes). We also detected two different variants of mcyB that may influence the production of microcystin congeners. The relative abundance of these genotypes was correlated with pH and nitrate concentrations. Metatranscriptomic analysis revealed that partial operons were, at times, the most abundant genotype and expressed in situ , suggesting the potential biosynthesis of truncated products. Quantification of genetic divergence between genotypes suggests that the observed strains are the result of preexisting heterogeneity rather than de novo mutation during the sampling period. Overall, our results show that natural Microcystis populations contain several cooccurring mcy genotypes that dynamically shift in abundance spatiotemporally via strain succession and likely influence the observed diversity of the produced congeners. IMPORTANCE Cyanobacteria are responsible for producing microcystins (MCs), a class of potent and structurally diverse toxins, in freshwater systems around the world. While microcystins have been studied for over 50 years, the diversity of their chemical forms and how this variation is encoded at the genetic level remain poorly understood, especially within natural populations of cyanobacterial harmful algal blooms (cyanoHABs). Here, we leverage community DNA and RNA sequences to track shifts in mcy genes responsible for producing microcystin, uncovering the relative abundance, expression, and variation of these genes. We studied this phenomenon in western Lake Erie, which suffers annually from cyanoHAB events, with impacts on drinking water, recreation, tourism, and commercial fishing. 
    more » « less
  3. van_der_Hooft, Justin_J J (Ed.)
    ABSTRACT Microcystisspp. are renowned for producing the hepatotoxin microcystin in freshwater cyanobacterial harmful algal blooms around the world, threatening drinking water supplies and public and environmental health. However,Microcystisgenomes also harbor numerous biosynthetic gene clusters (BGCs) encoding the biosynthesis of other secondary metabolites, including many with toxic properties. Most of these BGCs are uncharacterized and currently lack links to biosynthesis products. However, recent field studies show that many of these BGCs are abundant and transcriptionally active in natural communities, suggesting potentially important yet unknown roles in bloom ecology and water quality. Here, we analyzed 21 xenicMicrocystiscultures isolated from western Lake Erie to investigate the diversity of the biosynthetic potential of this genus. Through metabologenomic andin silicoapproaches, we show that theseMicrocystisstrains contain variable BGCs, previously observed in natural populations, and encode distinct metabolomes across cultures. Additionally, we find that the majority of metabolites and gene clusters are uncharacterized, highlighting our limited understanding of the chemical repertoire ofMicrocystisspp. Due to the complex metabolomes observed in culture, which contain a wealth of diverse congeners as well as unknown metabolites, these results underscore the need to deeply explore and identify secondary metabolites produced byMicrocystisbeyond microcystins to assess their impacts on human and environmental health.IMPORTANCEThe genusMicrocystisforms dense cyanobacterial harmful algal blooms (cyanoHABs) and can produce the toxin microcystin, which has been responsible for drinking water crises around the world. While microcystins are of great concern,Microcystisalso produces an abundance of other secondary metabolites that may be of interest due to their potential for toxicity, ecological importance, or pharmaceutical applications. In this study, we combine genomic and metabolomic approaches to study the genes responsible for the biosynthesis of secondary metabolites as well as the chemical diversity of produced metabolites inMicrocystisstrains from the Western Lake Erie Culture Collection. This unique collection comprisesMicrocystisstrains that were directly isolated from western Lake Erie, which experiences substantial cyanoHAB events annually and has had negative impacts on drinking water, tourism, and industry. 
    more » « less
  4. null (Ed.)
    Microcystins produced during harmful cyanobacterial blooms are a public health concern. Although patterns are emerging, the environmental cues that stimulate production of microcystin remain confusing, hindering our ability to predict fluctuations in bloom toxicity. In earlier work, growth at cool temperatures relative to optimum (18°C vs. 26°C) was confirmed to increase microcystin quota in batch cultures of Microcystis aeruginosa NIES-843. Here, we tested this response in M. aeruginosa PCC 7806 using continuous cultures to examine temporal dynamics and using RNA-sequencing to investigate the physiological nature of the response. A temperature reduction from 26 to 19°C increased microcystin quota ∼2-fold, from an average of ∼464 ag μm –3 cell volume to ∼891 ag μm –3 over a 7–9 d period. Reverting the temperature to 26°C returned the cellular microcystin quota to ∼489 ag μm –3 . Long periods (31–42 d) at 19°C did not increase or decrease microcystin quota beyond that observed at 7–9 d. Nitrogen concentration had little effect on the overall response. RNA sequencing indicated that the decrease in temperature to 19°C induced a classic cold-stress response in M. aeruginosa PCC 7806, but this operated on a different timescale than the increased microcystin production. Microcystin quota showed a strong 48- to 72-h time-lag correlation to mcy gene expression, but no correlation to concurrent mcy expression. This work confirms an effect of temperature on microcystin quota and extends our understanding of the physiological nature of the response. 
    more » « less
  5. Abstract Picoplankton populations dominate the planktonic community in the surface oligotrophic ocean. Yet, their strategies in the acquisition and the partitioning of organic and inorganic sources of nitrogen (N) and carbon (C) are poorly described. Here, we measured at the single‐cell level the uptake of dissolved inorganic C (C‐fixation), C‐leucine, N‐leucine, nitrate (NO3), ammonium (NH4+), and N‐urea in pigmented and nonpigmented picoplankton groups at six low‐N stations in the northwestern Atlantic Ocean. Our study highlights important differences in trophic strategies betweenProchlorococcus,Synechococcus, photosynthetic pico‐eukaryotes, and nonpigmented prokaryotes. Nonpigmented prokaryotes were characterized by high leucine uptake rates, nonsignificant C‐fixation and relatively low NH4+, N‐urea, and NO3uptake rates. Nonpigmented prokaryotes contributed to 7% ± 3%, 2% ± 2%, and 9% ± 5% of the NH4+, NO3, and N‐urea community uptake, respectively. In contrast, pigmented groups displayed relatively high C‐fixation rates, NH4+and N‐urea uptake rates, but lower leucine uptake rates than nonpigmented prokaryotes.Synechococcusand photosynthetic pico‐eukaryotes NO3uptake rates were higher thanProchlorococcusones. Pico‐sized pigmented groups accounted for a significant fraction of the community C‐fixation (63% ± 27%), NH4+uptake (47% ± 27%), NO3uptake (62% ± 49%), and N‐urea uptake (81% ± 35%). Interestingly,Prochlorococcusand photosynthetic pico‐eukaryotes showed a greater reliance on C‐ and N‐leucine thanSynechococcuson average, suggesting a greater reliance on organic C and N sources. Taken together, our single‐cell results decipher the wide diversity of C and N trophic strategies between and within marine picoplankton groups, but a clear partitioning between pigmented and nonpigmented groups still remains. 
    more » « less