Abstract The thermoelectric properties of semiconducting polymers are influenced by both the carrier concentration and the morphology that sets the pathways for charge transport. A combination of optical, morphological, and electrical characterization is used to assess the effect of the role of disorder on the thermoelectric properties of thin films of poly(3‐hexylthiophene) (P3HT) doped with 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ). Controlled morphologies are formed by casting blends of regioregular (RR‐P3HT) and regiorandom (RRa‐P3HT) and then subsequently doped with F4TCNQ from the vapor phase. Optical spectroscopy and X‐ray scattering show that vapor phase doping induces order in the disordered regions of thin films and increases the long‐range connectivity of the film. The thermoelectric properties are assessed as a function of composition and it is shown that while the Seebeck coefficient is affected by structural ordering, the electrical conductivity and power factor are more strongly correlated with the long‐range connectivity of ordered domains.
more »
« less
Effects of Counter‐Ion Size on Delocalization of Carriers and Stability of Doped Semiconducting Polymers
Abstract Since doped polymers require a charge‐neutralizing counter‐ion to maintain charge neutrality, tailored and high degrees of doping in organic semiconductors requires an understanding of the coupling between ionic and electronic carrier motion. A method of counter‐ion exchange is utilized using the polymeric semiconductor poly[2,5‐bis(3‐tetradecylthiophen‐2‐yl)thieno[3,2‐b]thiophene] ‐C14to deconvolute the effects of ionic/polaronic interactions with the electrical properties of doped semiconducting polymers. In particular, exchanging the counter‐ions of the dopant nitrosonium hexafluorophosphate enables investigation into the role of counter‐ion size from 5.2 to 8.2 Å in diameter. The orientational order of the polymeric crystallites is not affected with this exchange process while effectively modifying the counter‐ion distance to the charge carrier. Doped films have electrical conductivities of 320 S cm−1and are not sensitive to an increased ion‐polaron distance. It is posited that other factors dominate the electrical properties at a device scale, such as the morphology and presence of domain boundaries. Interestingly, the temperature stability of the doped film can be drastically improved with the use of counter‐ions containing less labile bonds. This platform serves as a unique way to retain the morphology of polymeric thin films while studying charge interactions at the local scale.
more »
« less
- Award ID(s):
- 1725797
- PAR ID:
- 10454675
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Electronic Materials
- Volume:
- 6
- Issue:
- 12
- ISSN:
- 2199-160X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Solution‐processable highly conductive polymers are of great interest in emerging electronic applications. For p‐doped polymers, conductivities as high a nearly 105S cm−1have been reported. In the case of n‐doped polymers, they often fall well short of the high values noted above, which might be achievable, if much higher charge‐carrier mobilities determined could be realized in combination with high charge‐carrier densities. This is in part due to inefficient doping and dopant ions disturbing the ordering of polymers, limiting efficient charge transport and ultimately the achievable conductivities. Here, n‐doped polymers that achieve a high conductivity of more than 90 S cm−1by a simple solution‐based co‐deposition method are reported. Two conjugated polymers with rigid planar backbones, but with disordered crystalline structures, exhibit surprising structural tolerance to, and excellent miscibility with, commonly used n‐dopants. These properties allow both high concentrations and high mobility of the charge carriers to be realized simultaneously in n‐doped polymers, resulting in excellent electrical conductivity and thermoelectric performance.more » « less
-
Katz, Howard (Ed.)Abstract The design of polymeric semiconductors exhibiting high electrical conductivity (σ) and thermoelectric power factor (PF) will be vital for flexible large‐area electronics. In this work, four polymers based on diketopyrrolopyrrole (DPP), 2,3‐dihydrothieno[3,4‐b][1,4]dioxine (EDOT), thieno[3,2‐b]thiophene (TT), and 3, 3′‐bis (2‐(2‐(2‐methoxyethoxy) ethoxy) ethoxy)‐2, 2′‐bithiophene (MEET) are investigated as side‐chains, with the MEET polymers newly synthesized for this study. These polymers are systematically doped with tetrafluorotetracyanoquinodimethane ( F4TCNQ), CF3SO3H, and the synthesized dopant Cp(CN)3‐(COOMe)3, differing in geometry and electron affinity. The DPP‐EDOT‐based polymer containing MEET as side‐chains exhibits the highest conductivity (σ) ≈700 S cm−1 in this series with the acidic dopant (CF3SO3H). This polymer also shows the lowest oxidation potential by cyclic voltammetry (CV), the strongest intermolecular interactions evidenced by differential scanning calorimetry (DSC), and has the most oxygen‐based functionality for possible hydrogen bonding and ionic screening. Other polymers exhibit high σ ≈300–500 S cm−1 and power factor up to 300 µW m−1K−2. The mechanism of conductivity is predominantly electronic, as validated by time‐dependent conductance studies and transient thermo voltage monitoring over time, including for those doped with the acid. These materials maintain significant thermal stability and air stability over ≈6 weeks. Density functional theory calculations reveal molecular geometries and inform about frontier energy levels. Raman spectroscopy, in conjunction with scanning electron microscopy (SEM‐EDS) and x‐ray diffraction, provides insight into the solid‐state microstructure and degree of phase separation of the doped polymer films. Infrared spectroscopy enables this study to further quantify the degree of charge transfer from polymer to dopant.more » « less
-
Abstract Naturally occurring polymeric structures often consist of 1D polymer chains intricately folded and entwined through non‐covalent bonds, adopting precise topologies crucial for their functionality. The exploration of crystalline 1D polymers through dynamic covalent chemistry (DCvC) and supramolecular interactions represents a novel approach for developing crystalline polymers. This study shows that sub‐angstrom differences in the counter‐ion size can lead to various helical covalent polymer (HCP) topologies, including a novel metal‐coordination HCP (m‐HCP) motif. Single‐crystal X‐ray diffraction (SCXRD) analysis of HCP−Na revealed that double helical pairs are formed by sodium ions coordinating to spiroborate linkages to form rectangular pores. The double helices are interpenetrated by the unreacted diols coordinating sodium ions. The reticulation of the m‐HCP structure was demonstrated by the successful synthesis of HCP−K. Finally, ion‐exchange studies were conducted to show the interconversion between HCP structures. This research illustrates how seemingly simple modifications, such as changes in counter‐ion size, can significantly influence the polymer topology and determine which supramolecular interactions dominate the crystal lattice.more » « less
-
Cyclic voltammetry was applied to investigate the permselective properties of electrode-supported ion-exchange polymer films intended for use in future molecular-scale spectroscopic studies of bipolar membranes. The ability of thin ionomer film assemblies to exclude mobile ions charged similarly to the polymer (co-ions) and accumulate ions charged opposite to the polymer (counterions) was scrutinized through use of the diffusible redox probe molecules [Ru(NH3)6]3+and [IrCl6]2−. With the anion exchange membrane (AEM) phase supported on a carbon disk electrode, bipolar junctions formed by addition of a cation exchange membrane (CEM) overlayer demonstrated high selectivity toward redox ion extraction and exclusion. For junctions formed using a Fumion®AEM phase and a Nafion®overlayer, [IrCl6]2−ions exchanged into Fumion®prior to Nafion®overcoating remained entrapped and the Fumion®excluded [Ru(NH3)6]3+ions for durability testing periods of more than 20 h under conditions of interest for eventualin situspectral measurements. Experiments with the Sustainion®anion exchange ionomer uncovered evidence for [IrCl6]2−ion coordination to pendant imidazolium groups on the polymer. A cyclic voltammetric method for estimation of the effective diffusion coefficient and equilibrium extraction constant for redox active probe ions within inert, uniform density electrode-supported thin films was applied to examine charge transport mechanisms.more » « less
An official website of the United States government
