skip to main content


Title: Formation and stability of gismondine‐type zeolite in cementitious systems
Abstract

Microcrystalline zeolites of the gismondine family are often reported in alkali‐activated and blended cement systems. However, little is known about gismondine's compatibility with other cementitious phases to determine stability in long‐term phase assemblage. Experimental studies were conducted to investigate the compositional field of gismondine stability in the lime‐alumina‐silica‐hydrate systems, with a particular focus on understanding the compatibility of gismondine with other cement phases such as C‐S‐H, ettringite, monosulfate, strätlingite, katoite, gypsum, calcite, portlandite, alkali, silica, and aluminosilicate phases. Results show that gismondine‐Ca forms readily at ~85°C in high aluminosilicate compositions; and persists in the presence of calcite, gypsum, ettringite, katoite solid solution, low Ca tobermorite‐like C‐S‐H, silica and aluminosilicate phases, at 20‐85°C. However, gismondine‐Ca reacts with: (a) monosulfate, producing ettringite‐thaumasite solid solution; (b) portlandite, forming tobermorite‐like C‐A‐S‐H gel and siliceous katoite at >55°C; (c) aqueous NaOH, generating gismondine‐(Na,Ca), a garronite‐like zeolite P solid solution; and (d) strätlingite leading to the conversion of strätlingite to gismondine indicating the metastability of strätlingite with respect to gismondine at 55°C. The outcomes are discussed to provide insights into the long‐term phase assemblage of relevant cement systems such as lime‐calcined clay, alkali‐activated materials, and potentially ancient Roman concrete.

 
more » « less
Award ID(s):
1932690
NSF-PAR ID:
10454704
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of the American Ceramic Society
Volume:
104
Issue:
3
ISSN:
0002-7820
Page Range / eLocation ID:
p. 1513-1525
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    An untapped source of amorphous SiO2, industrially generated Indian biomass ash (SA)—90% amorphous, with composition of ~60% SiO2and ~20% unburnt carbon—can be used to produce cementitious and alkali‐activated binders. This study reports dissolution of amorphous Si from SA in 0.5 mol/L and 1 mol/L aqueous NaOH, with and without added Ca(OH)2, at SA:Ca(OH)2wt% ratios of 100:0, 87.5:12.5, and 82.5:17.5. Monitoring of elemental dissolution and subsequent/simultaneous product uptake by ICP‐OES offers an effective process for evaluating utility of industrial wastes in binder‐based systems. After 28 days in solution, up to 68% of total Si is dissolved from SA in 1 mol/L NaOH, with values as much as 38% lower in the presence of Ca(OH)2, due to the formation of tobermorite‐like C‐S‐H. FTIR,29Si MAS‐NMR, and XRD are used to characterize solid reaction products and observe reaction progress. Product chemistries calculated from ICP‐OES results and verified by selective dissolution in EDTA/NaOH—namely, Ca/Si of 0.6‐1 and Na adsorption of 1‐2 mmol/g—are found to be consistent with those indicated by aforementioned techniques. This indicates the efficacy of ICP‐OES in estimating product chemistry via such a methodology.

     
    more » « less
  2. null (Ed.)
    The long-term durability of cement-based materials is influenced by the pore structure and associated permeability at the sub-micrometre length scale. With the emergence of new types of sustainable cements in recent decades, there is a pressing need to be able to predict the durability of these new materials, and therefore nondestructive experimental techniques capable of characterizing the evolution of the pore structure are increasingly crucial for investigating cement durability. Here, small-angle neutron scattering is used to analyze the evolution of the pore structure in alkali-activated materials over the initial 24 h of reaction in order to assess the characteristic pore sizes that emerge during these short time scales. By using a unified fitting approach for data modeling, information on the pore size and surface roughness is obtained for a variety of precursor chemistries and morphologies (metakaolin- and slag-based pastes). Furthermore, the impact of activator chemistry is elucidated via the analysis of pastes synthesized using hydroxide- and silicate-based activators. It is found that the main aspect influencing the size of pores that are accessible using small-angle neutron scattering analysis (approximately 10–500 Å in diameter) is the availability of free silica in the activating solution, which leads to a more refined pore structure with smaller average pore size. Moreover, as the reaction progresses the gel pores visible using this scattering technique are seen to increase in size. 
    more » « less
  3. Abstract

    Synthetic hydrotalcites were produced by a co‐precipitation method. The hydrotalcites are represented by the general formula [MII(1‐x)MIII(x)(OH)2][An−]x/n·zH2O, where MIIis a divalent cation (eg, Mg2+or Ca2+), MIIIis a trivalent cation (eg, Al3+) and An−is the interlayer anion. Herein, MII = Mg, and MIII = Al such that [Mg/Al] = [2, 3] (atomic units) and An−, represents intercalant species including: OH, SO42−and CO32−anions. The thermochemical data of each compound including their solubility constants (Kso), density and molar volume were quantified at T = 25 ± 0.5°C, andP = 1 bar. The solubilities of the synthetic hydrotalcites, irrespective of their divalent‐trivalent cation partitioning ratio, scaled as CO32− < SO42− < OH; in order of decreasing solubility. The type of anion, very slightly, affected the solubility with less than ±1 log unit of variation for [Mg/Al] = 2, and ±2 log units of variation for [Mg/Al] = 3. The solubilities of these phases were strongly correlated with that of gibbsite (Al(OH)3); such that activity of the [AlO2] species wassolubility determiningwith increasing pH. The tabulated thermodynamic data were used to construct solid‐solution models for phases encompassing both cation distribution ratios and to calculate stable phase equilibria relevant to alkali‐activated slag (AAS) systems for diverse activator compositions.

     
    more » « less
  4. null (Ed.)
    The effect of hydrogels containing nanosilica (NSi) on the autogenous shrinkage, mechanical strength, and electrical resistivity of cement pastes was studied. The interaction between the hydrogels and the surrounding cementitious matrix was examined using thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The addition of hydrogels decreased autogenous shrinkage in the cement pastes and this reduction showed a dependence on the concentration of NSi in the hydrogels. Compressive strength and electrical resistivity were reduced in the cement pastes with hydrogels and this reduction was decreased with increased concentration of NSi in the hydrogel. A change in the phase composition of the cement paste in the region close to the hydrogel was noted, compared to the region away from the hydrogel. In a lime solution with increased pH and temperature, Ca(OH)2 and CaCO3 were found to form within the hydrogels; evidence of calcium-silicate-hydrate (C-S-H) formation in the hydrogels with NSi was obtained, indicating the possible pozzolanic potential of the hydrogels with NSi. 
    more » « less
  5. The mineral apatite, Ca10(PO4)6(F,OH,Cl)2, incorporates sulfur (S) during crystallization from S-bearing hydrothermal fluids and silicate melts. Our previous studies of natural and experimental apatite demonstrate that the oxidation state of S in apatite varies systematically as a function of oxygen fugacity (fO2). The S oxidation states –1 and –2 were quantitatively identified in apatite crystallized from reduced, S-bearing hydrothermal fluids and silicate melts by using sulfur K-edge X‑ray absorption near-edge structure spectroscopy (S-XANES) where S6+/ΣS in apatite increases from ~0 at FMQ-1 to ~1 at FMQ+2, where FMQ refers to the fayalite-magnetite-quartz fO2 buffer. In this study, we employ quantum-mechanical calculations to investigate the atomistic structure and energetics of S(-I) and S(-II) incorporated into apatite and elucidate incorporation mechanisms. One S(-I) species (disulfide, S22−) and two S(-II) species (bisulfide, HS−, and sulfide, S2−) are investigated as possible forms of reduced S species in apatite. In configuration models for the simulation, these reduced S species are positioned along the c-axis channel, originally occupied by the column anions F, Cl, and OH in the end-member apatites. In the lowest-energy configurations of S-incorporated apatite, disulfide prefers to be positioned halfway between the mirror planes at z = 1/4 and 3/4. In contrast, the energy-optimized bisulfide is located slightly away from the mirror planes by ~0.04 fractional units in the c direction. The energetic stability of these reduced S species as a function of position along the c-axis can be explained by the geometric and electrostatic constraints of the Ca and O planes that constitute the c-axis channel. The thermodynamics of incorporation of disulfide and bisulfide into apatite are evaluated by using solid-state reaction equations where the apatite host and a solid S-bearing source phase (pyrite and Na2S2(s) for disulfide; troilite and Na2S(s) for sulfide) are the reactants, and the S-incorporated apatite and an anion sink phase are the products. The Gibbs free energy (ΔG) is lower for incorporation with Na-bearing phases than with Fe-bearing phases, which is attributed to the higher energetic stability of the iron sulfide minerals as a source phase for S than the sodium sulfide phases. The thermodynamics of incorporation of reduced S are also evaluated by using reaction equations involving dissolved disulfide and sulfide species [HnS2(aq)(2–n) and HnS(aq)(2–n); n = 0, 1, and 2] as a source phase. The ΔG of S-incorporation increases for fluorapatite and chlorapatite and decreases for hydroxylapatite as these species are protonated (i.e., as n changes from 0 to 2). These thermodynamic results demonstrate that the presence of reduced S in apatite is primarily controlled by the chemistry of magmatic and hydrothermal systems where apatite forms (e.g., an abundance of Fe; solution pH). Ultimately, our methodology developed for evaluating the thermodynamics of S incorporation in apatite as a function of temperature, pH, and composition is highly applicable to predicting the trace and volatile element incorporation in minerals in a variety of geological systems. In addition to solid-solid and solid-liquid equilibria treated here at different temperatures and pH, the methodology can be easily extended also to different pressure conditions by just performing the quantum-mechanical calculations at elevated pressures. 
    more » « less