skip to main content


This content will become publicly available on July 1, 2024

Title: ALMA 1.1 mm Observations of a Conservative Sample of High-redshift Massive Quiescent Galaxies in SHELA
Abstract We present a sample of 30 massive (log( M * / M ⊙ ) > 11) z = 3–5 quiescent galaxies selected from the Spitzer-HETDEX Exploratory Large Area (SHELA) Survey and observed at 1.1 mm with Atacama Large Millimeter/submillimeter Array (ALMA) Band 6 observations. These ALMA observations would detect even modest levels of dust-obscured star formation, on the order of ∼20 M ⊙ yr −1 at z ∼ 4 at the 1 σ level, allowing us to quantify the amount of contamination from dusty star-forming sources in our quiescent sample. Starting with a parent sample of candidate massive quiescent galaxies from the Stevans et al. v1 SHELA catalog, we use the Bayesian B agpipes spectral energy distribution fitting code to derive robust stellar masses ( M * ) and star formation rates (SFRs) for these sources, and select a conservative sample of 36 candidate massive ( M * > 10 11 M ⊙ ) quiescent galaxies, with specific SFRs >2 σ below the Salmon et al. star-forming main sequence at z ∼ 4. Based on the ALMA imaging, six of these candidate quiescent galaxies show the presence of significant dust-obscured star formation, and thus were removed from our final sample. This implies a ∼17% contamination rate from dusty star-forming galaxies with our selection criteria using the v1 SHELA catalog. This conservatively selected quiescent galaxy sample at z = 3–5 will provide excellent targets for future observations to constrain better how massive galaxies can both grow and shut down their star formation in a relatively short period.  more » « less
Award ID(s):
2009905
NSF-PAR ID:
10454769
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
951
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
49
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present the characteristics of 2 mm selected sources from the largest Atacama Large Millimeter/submillimeter Array (ALMA) blank-field contiguous survey conducted to date, the Mapping Obscuration to Reionization with ALMA (MORA) survey covering 184 arcmin2at 2 mm. Twelve of 13 detections above 5σare attributed to emission from galaxies, 11 of which are dominated by cold dust emission. These sources have a median redshift ofz2mm=3.60.3+0.4primarily based on optical/near-infrared photometric redshifts with some spectroscopic redshifts, with 77% ± 11% of sources atz> 3 and 38% ± 12% of sources atz> 4. This implies that 2 mm selection is an efficient method for identifying the highest-redshift dusty star-forming galaxies (DSFGs). Lower-redshift DSFGs (z< 3) are far more numerous than those atz> 3 yet are likely to drop out at 2 mm. MORA shows that DSFGs with star formation rates in excess of 300Myr−1and a relative rarity of ∼10−5Mpc−3contribute ∼30% to the integrated star formation rate density at 3 <z< 6. The volume density of 2 mm selected DSFGs is consistent with predictions from some cosmological simulations and is similar to the volume density of their hypothesized descendants: massive, quiescent galaxies atz> 2. Analysis of MORA sources’ spectral energy distributions hint at steeper empirically measured dust emissivity indices than reported in typical literature studies, withβ=2.20.4+0.5. The MORA survey represents an important step in taking census of obscured star formation in the universe’s first few billion years, but larger area 2 mm surveys are needed to more fully characterize this rare population and push to the detection of the universe’s first dusty galaxies.

     
    more » « less
  2. Abstract

    Due to their extremely dust-obscured nature, much uncertainty still exists surrounding the stellar mass growth and content in dusty, star-forming galaxies (DSFGs) atz> 1. In this work, we present a numerical model built using empirical data on DSFGs to estimate their stellar mass contributions across the first ∼10 Gyr of cosmic time. We generate a dust-obscured stellar mass function that extends beyond the mass limit of star-forming stellar mass functions in the literature, and predict that massive DSFGs constitute as much as 50%–100% of all star-forming galaxies withM≥1011Matz> 1. We predict the number density of massive DSFGs and find general agreement with observations, although more data is needed to narrow wide observational uncertainties. We forward-model mock massive DSFGs to their quiescent descendants and find remarkable agreement with observations from the literature demonstrating that, to first order, massive DSFGs are a sufficient ancestral population to describe the prevalence of massive quiescent galaxies atz> 1. We predict that massive DSFGs and their descendants contribute as much as 25%–60% to the cosmic stellar mass density during the peak of cosmic star formation, and predict an intense epoch of population growth during the ∼1 Gyr fromz= 6 to 3 during which the majority of the most massive galaxies at high-zgrow and then quench. Future studies seeking to understand massive galaxy growth and evolution in the early universe should strategize synergies with data from the latest observatories (e.g., JWST and the Atacama Large Millimeter/submillimeter Array) to better include the heavily dust-obscured galaxy population.

     
    more » « less
  3. Abstract

    A complete census of dusty star-forming galaxies (DSFGs) at early epochs is necessary to constrain the obscured contribution to the cosmic star formation rate density (CSFRD); however, DSFGs beyondz∼ 4 are both rare and hard to identify from photometric data alone due to degeneracies in submillimeter photometry with redshift. Here, we present a pilot study obtaining follow-up Atacama Large Millimeter Array (ALMA) 2 mm observations of a complete sample of 39 850μm-bright dusty galaxies in the SSA22 field. Empirical modeling suggests 2 mm imaging of existing samples of DSFGs selected at 850μm—1 mm can quickly and easily isolate the “needle in a haystack” DSFGs that sit atz> 4 or beyond. Combining archival submillimeter imaging with our measured ALMA 2 mm photometry (1σ∼ 0.08 mJy beam−1rms), we characterize the galaxies’ IR spectral energy distributions (SEDs) and use them to constrain redshifts. With available redshift constraints fit via the combination of six submillimeter bands, we identify 6/39 high-zcandidates each with >50% likelihood to sit atz> 4, and find a positive correlation between redshift and 2 mm flux density. Specifically, our models suggest the addition of 2 mm to a moderately constrained IR SED will improve the accuracy of a millimeter-derived redshift from Δz/(1 +z) = 0.3 to Δz/(1 +z) = 0.2. Our IR SED characterizations provide evidence for relatively high-emissivity spectral indices (〈β〉 = 2.4 ± 0.3) in the sample. We measure that especially bright (S850μm> 5.55 mJy) DSFGs contribute ∼10% to the cosmic-averaged CSFRD from 2 <z< 5, confirming findings from previous work with similar samples.

     
    more » « less
  4. Abstract

    We use ALMA observations of CO(2–1) in 13 massive (M*≳ 1011M) poststarburst galaxies atz∼ 0.6 to constrain the molecular gas content in galaxies shortly after they quench their major star-forming episode. The poststarburst galaxies in this study are selected from the Sloan Digital Sky Survey spectroscopic samples (Data Release 14) based on their spectral shapes, as part of the Studying QUenching at Intermediate-z Galaxies: Gas, anguLarmomentum, and Evolution (SQuIGGLE) program. Early results showed that two poststarburst galaxies host large H2reservoirs despite their low inferred star formation rates (SFRs). Here we expand this analysis to a larger statistical sample of 13 galaxies. Six of the primary targets (45%) are detected, withMH2109M. Given their high stellar masses, this mass limit corresponds to an average gas fraction offH2MH2/M*7%or ∼14% using lower stellar masses estimates derived from analytic, exponentially declining star formation histories. The gas fraction correlates with theDn4000 spectral index, suggesting that the cold gas reservoirs decrease with time since burst, as found in local K+A galaxies. Star formation histories derived from flexible stellar population synthesis modeling support this empirical finding: galaxies that quenched ≲150 Myr prior to observation host detectable CO(2–1) emission, while older poststarburst galaxies are undetected. The large H2reservoirs and low SFRs in the sample imply that the quenching of star formation precedes the disappearance of the cold gas reservoirs. However, within the following 100–200 Myr, theSQuIGGLEgalaxies require the additional and efficient heating or removal of cold gas to bring their low SFRs in line with standard H2scaling relations.

     
    more » « less
  5. The Atacama Large Millimeter Array (ALMA) Large Program to INvestigate [CII] at Early times (ALPINE) targets the [CII] 158 μ m line and the far-infrared continuum in 118 spectroscopically confirmed star-forming galaxies between z  = 4.4 and z  = 5.9. It represents the first large [CII] statistical sample built in this redshift range. We present details regarding the data processing and the construction of the catalogs. We detected 23 of our targets in the continuum. To derive accurate infrared luminosities and obscured star formation rates (SFRs), we measured the conversion factor from the ALMA 158 μ m rest-frame dust continuum luminosity to the total infrared luminosity ( L IR ) after constraining the dust spectral energy distribution by stacking a photometric sample similar to ALPINE in ancillary single-dish far-infrared data. We found that our continuum detections have a median L IR of 4.4 × 10 11 L ⊙ . We also detected 57 additional continuum sources in our ALMA pointings. They are at a lower redshift than the ALPINE targets, with a mean photometric redshift of 2.5 ± 0.2. We measured the 850 μ m number counts between 0.35 and 3.5 mJy, thus improving the current interferometric constraints in this flux density range. We found a slope break in the number counts around 3 mJy with a shallower slope below this value. More than 40% of the cosmic infrared background is emitted by sources brighter than 0.35 mJy. Finally, we detected the [CII] line in 75 of our targets. Their median [CII] luminosity is 4.8 × 10 8 L ⊙ and their median full width at half maximum is 252 km s −1 . After measuring the mean obscured SFR in various [CII] luminosity bins by stacking ALPINE continuum data, we find a good agreement between our data and the local and predicted SFR– L [CII] relations. 
    more » « less