Abstract We present the characteristics of 2 mm selected sources from the largest Atacama Large Millimeter/submillimeter Array (ALMA) blank-field contiguous survey conducted to date, the Mapping Obscuration to Reionization with ALMA (MORA) survey covering 184 arcmin2at 2 mm. Twelve of 13 detections above 5σare attributed to emission from galaxies, 11 of which are dominated by cold dust emission. These sources have a median redshift of primarily based on optical/near-infrared photometric redshifts with some spectroscopic redshifts, with 77% ± 11% of sources atz> 3 and 38% ± 12% of sources atz> 4. This implies that 2 mm selection is an efficient method for identifying the highest-redshift dusty star-forming galaxies (DSFGs). Lower-redshift DSFGs (z< 3) are far more numerous than those atz> 3 yet are likely to drop out at 2 mm. MORA shows that DSFGs with star formation rates in excess of 300M⊙yr−1and a relative rarity of ∼10−5Mpc−3contribute ∼30% to the integrated star formation rate density at 3 <z< 6. The volume density of 2 mm selected DSFGs is consistent with predictions from some cosmological simulations and is similar to the volume density of their hypothesized descendants: massive, quiescent galaxies atz> 2. Analysis of MORA sources’ spectral energy distributions hint at steeper empirically measured dust emissivity indices than reported in typical literature studies, with . The MORA survey represents an important step in taking census of obscured star formation in the universe’s first few billion years, but larger area 2 mm surveys are needed to more fully characterize this rare population and push to the detection of the universe’s first dusty galaxies.
more »
« less
ALMA 1.1 mm Observations of a Conservative Sample of High-redshift Massive Quiescent Galaxies in SHELA
Abstract We present a sample of 30 massive (log( M * / M ⊙ ) > 11) z = 3–5 quiescent galaxies selected from the Spitzer-HETDEX Exploratory Large Area (SHELA) Survey and observed at 1.1 mm with Atacama Large Millimeter/submillimeter Array (ALMA) Band 6 observations. These ALMA observations would detect even modest levels of dust-obscured star formation, on the order of ∼20 M ⊙ yr −1 at z ∼ 4 at the 1 σ level, allowing us to quantify the amount of contamination from dusty star-forming sources in our quiescent sample. Starting with a parent sample of candidate massive quiescent galaxies from the Stevans et al. v1 SHELA catalog, we use the Bayesian B agpipes spectral energy distribution fitting code to derive robust stellar masses ( M * ) and star formation rates (SFRs) for these sources, and select a conservative sample of 36 candidate massive ( M * > 10 11 M ⊙ ) quiescent galaxies, with specific SFRs >2 σ below the Salmon et al. star-forming main sequence at z ∼ 4. Based on the ALMA imaging, six of these candidate quiescent galaxies show the presence of significant dust-obscured star formation, and thus were removed from our final sample. This implies a ∼17% contamination rate from dusty star-forming galaxies with our selection criteria using the v1 SHELA catalog. This conservatively selected quiescent galaxy sample at z = 3–5 will provide excellent targets for future observations to constrain better how massive galaxies can both grow and shut down their star formation in a relatively short period.
more »
« less
- Award ID(s):
- 2009905
- PAR ID:
- 10454769
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 951
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 49
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The physical mechanisms that quench star formation, turning blue star-forming galaxies into red quiescent galaxies, remain unclear. In this Letter, we investigate the role of gas supply in suppressing star formation by studying the molecular gas content of post-starburst galaxies. Leveraging the wide area of the Sloan Digital Sky Survey, we identify a sample of massive intermediate-redshift galaxies that have just ended their primary epoch of star formation. We present Atacama Large Millimeter/submillimeter Array CO(2-1) observations of two of these post-starburst galaxies at z ˜ 0.7 with {M}* ˜ 2× {10}11 {M}⊙ . Their molecular gas reservoirs of (6.4+/- 0.8) × {10}9 {M}⊙ and (34.0+/- 1.6)× {10}9 {M}⊙ are an order of magnitude larger than comparable-mass galaxies in the local universe. Our observations suggest that quenching does not require the total removal or depletion of molecular gas, as many quenching models suggest. However, further observations are required both to determine if these apparently quiescent objects host highly obscured star formation and to investigate the intrinsic variation in the molecular gas properties of post-starburst galaxies.more » « less
-
ABSTRACT We report the detection of cold dust in an apparently quiescent massive galaxy (log (M⋆/M⊙) ≈ 11) at z ∼ 2 (G4). The source is identified as a serendipitous 2 mm continuum source in a deep ALMA observation within the field of Q2343-BX610, a z = 2.21 massive star-forming disc galaxy. Available multiband photometry of G4 suggests redshift of z ∼ 2 and a low specific star formation rate (sSFR), log (SFR/M⋆)[yr−1] ≈ −10.2, corresponding to ≈1.2 dex below the z = 2 main sequence (MS). G4 appears to be a peculiar dust-rich quiescent galaxy for its stellar mass (log (Mdust/M⋆) = −2.71 ± 0.26), with its estimated mass-weighted age (∼1–2 Gyr). We compile z ≳ 1 quiescent galaxies in the literature and discuss their age–ΔMS and log (Mdust/M⋆)–age relations to investigate passive evolution and dust depletion scale. A long dust depletion time and its morphology suggest morphological quenching along with less efficient feedback that could have acted on G4. The estimated dust yield for G4 further supports this idea, requiring efficient survival of dust and/or grain growth, and rejuvenation (or additional accretion). Follow-up observations probing the stellar light and cold dust peak are necessary to understand the implication of these findings in the broader context of galaxy evolutionary studies and quenching in the early universe.more » « less
-
Abstract The 2 mm Mapping Obscuration to Reionization with ALMA (MORA) Survey was designed to detect high-redshift ( z ≳ 4), massive, dusty star-forming galaxies (DSFGs). Here we present two likely high-redshift sources, identified in the survey, whose physical characteristics are consistent with a class of optical/near-infrared (OIR)-invisible DSFGs found elsewhere in the literature. We first perform a rigorous analysis of all available photometric data to fit spectral energy distributions and estimate redshifts before deriving physical properties based on our findings. Our results suggest the two galaxies, called MORA-5 and MORA-9, represent two extremes of the “OIR-dark” class of DSFGs. MORA-5 ( z phot = 4.3 − 1.3 + 1.5 ) is a significantly more active starburst with a star formation rate (SFR) of 830 − 190 + 340 M ⊙ yr −1 compared to MORA-9 ( z phot = 4.3 − 1.0 + 1.3 ), whose SFR is a modest 200 − 60 + 250 M ⊙ yr −1 . Based on the stellar masses ( M ⋆ ≈ 10 10−11 M ⊙ ), space density ( n ∼ (5 ± 2) × 10 −6 Mpc −3 , which incorporates two other spectroscopically confirmed OIR-dark DSFGs in the MORA sample at z = 4.6 and z = 5.9), and gas depletion timescales (<1 Gyr) of these sources, we find evidence supporting the theory that OIR-dark DSFGs are the progenitors of recently discovered 3 < z < 4 massive quiescent galaxies.more » « less
-
We present a new rest-frame color–color selection method using synthetic us − gs and gs − is, (ugi)s colors to identify star-forming and quiescent galaxies. Our method is similar to the widely used U − V versus V − J (UVJ) diagram. However, UVJ suffers known systematics. Spectroscopic campaigns have shown that UVJ-selected quiescent samples at z ≳ 3 include ∼10%–30% contamination from galaxies with dust-obscured star formation and strong emission lines. Moreover, at z > 3, UVJ colors are extrapolated because the rest-frame band shifts beyond the coverage of the deepest bandpasses at <5 μm (typically Spitzer/IRAC 4.5 μm or future JWST/NIRCam observations). We demonstrate that (ugi)s offers improvements to UVJ at z > 3, and can be applied to galaxies in the JWST era. We apply (ugi)s selection to galaxies at 0.5 < z < 6 from the (observed) 3D-HST and UltraVISTA catalogs, and to the (simulated) JAGUAR catalogs. We show that extrapolation can affect (V − J)0 color by up to 1 mag, but changes $${({g}_{s}-{i}_{s})}_{0}$$ color by ≤0.2 mag, even at z ≃ 6. While (ugi)s-selected quiescent samples are comparable to UVJ in completeness (both achieve ∼85%–90% at z = 3–3.5), (ugi)s reduces contamination in quiescent samples by nearly a factor of 2, from ≃35% to ≃17% at z = 3, and from ≃60% to ≃33% at z = 6. This leads to improvements in the true-to-false-positive ratio (TP/FP), where we find TP/FP ≳2.2 for (ugi)s at z ≃ 3.5 − 6, compared to TP/FP < 1 for UVJ-selected samples. This indicates that contaminants will outnumber true quiescent galaxies in UVJ at these redshifts, while (ugi)s will provide higher-fidelity samples.more » « less