Abstract The mesh-web weaver family Dictynidae s.l. has been labelled a ‘tailor’s drawer’ family because it contains taxonomically unorganized and often evolutionarily distant species. Previous molecular phylogenetic studies using limited taxonomic sampling and legacy target genes involving representatives of the family have been consistent in: (i) exhibiting low branch support values and (ii) the recovery of genera and species currently classified as dictynids outside of Dictynidae. The genera within the family and the relationships among dictynid genera have never been rigorously tested using genomic-scale data. Here, we use exemplar dictynid species from the most currently recognized dictynid genera and ultraconserved elements (UCEs) recovered in silico from low-coverage, whole-genome sequencing plus Sanger data to resolve the phylogenetic placement and relationships of genera within the family Dictynidae s.l. The resulting phylogeny, along with morphological evidence, supports several taxonomic updates to the group: Argyronetidae stat. reinst., Lathyidae fam. n., and Dictynidae s.s. are included in Dictynoidea. Argyronetidae stat. reinst. include the genera Altella, Arctella, Argenna, Argyroneta, Chaerea, Devade, Hackmania, Iviella, Mizaga, Paratheuma, Saltonia, Tricholathys. The family Lathyidae fam. n. is proposed to include the genera Afrolathys gen. n. (Af. madagascariensis sp. n. and Af. tanzanica sp. n.), Analtella stat. reinst. (Analtella affinis comb. n., Analtella dentichelis comb. n., Analtella narbonensis comb. n., Analtella pygmaea comb. n., and Analtella teideensis comb. n.), Andronova gen. n. (Andronova alberta comb. n., Andronova annulata comb. n., Andronova. arabs comb. n., Andronova cambridgei comb. n., Andronova dihamata comb. n., Andronova lehtineni comb. n., Andronova maculosa comb. n., Andronova spasskyi comb. n., Andronova subalberta comb. n., Andronova subviridis comb. n., and Andronova sylvania comb. n.), Asialathys gen. n. (As. deltoidea comb. n., As. fibulata comb. n., As. huangyangjieensis comb. n., As. spiralis comb. n., and As. zhanfengi comb. n.), Bannaella (B. lhasana, B. sexoculata comb. n., B. sinuata, and B. tibialis), Denticulathys gen. n. (D. amaataaidoo sp. n.), Langlibaitiao (Langlibaitiao chishuiensis, Langlibaitiao inaffectus, Langlibaitiao insulanus comb. n., and Langlibaitiao zhangshun), Lathys s.s. (Lathys bin, Lathys borealis, Lathysbrevitibialis, Lathyscoralynae, Lathysdixiana, Lathysfoxi, Lathysheterophthalma, Lathyshumilis, Lathyshumilis meridionalis, Lathyslepida, Lathysmantarota, Lathys sexpustulata, Lathys spiralis, and Lathys subhumilis), Scotolathys s.s. (S. delicatula stat. reinst., S. immaculata stat. reinst., S. maculina stat. reinst., S. pallida stat. reinst., and S. simplex), Tolokonniella gen. n. Tolokonniella ankaraensis comb. n., Tolokonniella mallorcensis comb. n., Tolokonniella maura comb. n., Tolokonniella stigmatisata comb. n., and Tolokonniella truncata comb. n.). Finally, Dictynidae s.s. are strongly supported to include the genera Adenodictyna, Ajmonia (Aj. changtunesis comb. n.) Anaxibia, Arangina, Archaeodictyna (Archaeodictyna aguasverdes comb. n., Archaeodictyna bispinosa comb. n., Archaeodictyna fuerteventurensis comb. n., and Archaeodictyna lanzarotensis comb. n.), Arethyna gen. n. (Arethyna coloradensis comb. n., Arethynaidahoana comb. n., Arethyna osceola comb. n., Arethyna personata comb. n., Arethyna peon comb. n., Arethyna saltona comb. n., Arethyna secuta comb. n., Arethyna sierra comb. n., Arethyna ubsunurica comb. n., Arethyna volucripes comb. n., and Arethyna volucripes volucripoides comb. n.), Argennina, Atelolathys, Banaidja, Brigittea (B. colona comb. n.), Califorenigma gen. n. (C. linsdalei comb. n.), Callevophthalmus, Dictyna (D. abundans, D. alaskae, D. albicoma, D. albovittata, D. alyceae, D. apacheca, D. arundinacea, D. bostoniensis, D. brevitarsus, D. cafayate, D. chandrai, D. cofete, D. columbiana, D. cronebergi, D. crosbyi, D. dauna, D. ectrapela, D. fluminensis, D. guineensis, D. hamifera, D. kosiorowiczi, D. laeviceps, D. linzhiensis, D. livida, D. marilina, D. moctezuma, D. namulinensis, D. navajoa, D. pictella, D. procerula, D. pusilla, D. quadrispinosa, D. ranchograndei, D. saepei, D. similis, D. simoni, D. sinaloa, D. siniloanensis, D. tarda, D. togata, D. tristis, D. trivirgata, D. tullgreni, D. turbida, D. uncinata, D. uvs, D. vittata, D. vultuosa, and D. yongshun), Dictynomorpha, Emblyna (E. acoreensis, E. aiko, E. altamira, E. ampla, E. angulata, E. annulipes, E. ardea, E. artemisia, E. borealis, E. borealis cavernosa, E. branchi, E. brevidens, E. budarini, E. burjatica, E. callida, E. capens, E. cavata comb. n., E. chitina, E. completa, E. completoides, E. consulta, E. cornupeta, E. coweta, E. crocana, E. decaprini, E. evicta, E. florens, E. formicaria, E. hentzi, E. horta, E. hoya, E. joaquina, E. lina, E. linda, E. manitoba, E. marissa, E. melva, E. nanda, E. oasa, E. palomara, E. pinalia, E. piratica, E. peragrata, E. reticulata, E. roscida, E. saylori, E. scotta, E. seminola, E. shasta, E. shoshonea, E. stulta, E. sublatoides, E. suwanea, and E. zaba), Eriena gen. n. (Er. minuta comb. n. and Er. mora comb. n.), Helenactyna, Khalotyna gen. n. (K. calcarata comb. n.), Kharitonovia, Mallos, Marilynia, Mashimo, Mexitlia, Myanmardictyna, Nigma, Nopalityna gen. n. (N. francisca comb. n., N. jonesae comb. n., N. orbiculata comb. n., N. sublata comb. n., N. suprenans comb. n., and N. uintana comb. n.), Pangunus gen. n. (Pa. kaszabi comb. n., Pa. umai comb. n., and Pa. xizangensis comb. n.), Paradictyna, Penangodyna, Phantyna, (Ph. agressa comb. n. and Ph. formidolosa comb. n.), Purplecorna gen. n. (Pu. gloria comb. n., Pu. guerrerensis comb. n., Pu. incredula comb. n., Pu. lecta comb. n., Pu. meditata comb. n., Pu. miniata comb. n., and Pu. terrestris comb. n.), Rhion, Shango, Shikibutyna gen. n. (Sh. felis comb. n., Sh. follicola comb. n., Sh. guanchae comb. n., Sh. mongolica comb. n., Sh. procerula comb. n., Sh. schmidti comb. n., Sh. szaboi comb. n., Sh. wangi comb. n., Sh. xizangensis comb. n., and Sh. zherikhini comb. n.), Simziella gen. n. (Si. annexa comb. n., Si. cebolla comb. n., Si. dunini comb. n., Si. major comb. n., Si. palmgreni comb. n., Si. paramajor comb. n., Si. sancta comb. n., Si. sotnik comb. n., Si. sylvania comb. n., Si. tridentata comb. n., Si. tucsona comb. n., Si. tyshchenkoi comb. n., Si. tyshchenkoi wrangeliana comb. n., Si. canadas comb. n., and Si. teideensis comb. n.), Spagnius gen. n. (Sp. albopilosa comb. n., Sp. foliacea comb. n., Sp. jacalana comb. n., and Sp. nebraska comb. n.), Sudesna, Tahuantina, Thallumetus, Tivyna (Ti. sonora comb. n.), Tolkienus gen. n. (Tolkienus armatus comb. n., Tolkienus bellans comb. n., Tolkienus bellans hatchi comb. n., Tolkienus estoc sp. n., Tolkienus ottoi comb. n., and Tolkienus longispina comb. n.), and Viridictyna. This study begins to remedy the dearth of systematic knowledge about this incredibly diverse spider group and fills knowledge gaps in the tree of life for little brown spiders.
more »
« less
Noise Suppression in a 10 GHz Octave-Spanning Frequency Comb
We demonstrate a 10 GHz octave-spanning frequency comb from a 1550 nm resonant waveguide-type electro-optic comb generator. The impact of cavity filtering on the amplified spontaneous emission and shot noise is studied experimentally and theoretically.
more »
« less
- Award ID(s):
- 2009982
- PAR ID:
- 10454881
- Date Published:
- Journal Name:
- 2022 IEEE Photonics Conference (IPC)
- Page Range / eLocation ID:
- 1 to 2
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A terahertz (THz) frequency comb capable of high-resolution measurement will significantly advance THz technology application in spectroscopy, metrology and sensing. The recently developed cryogenic-cooled THz quantum cascade laser (QCL) comb has exhibited great potentials with high power and broadband spectrum. Here, we report a room temperature THz harmonic frequency comb in 2.2 to 3.3 THz based on difference-frequency generation from a mid-IR QCL. The THz comb is intracavity generated via down-converting a mid-IR comb with an integrated mid-IR single mode based on distributed-feedback grating without using external optical elements. The grating Bragg wavelength is largely detuned from the gain peak to suppress the grating dispersion and support the comb operation in the high gain spectral range. Multiheterodyne spectroscopy with multiple equally spaced lines by beating it with a reference Fabry-Pérot comb confirms the THz comb operation. This type of THz comb will find applications to room temperature chip-based THz spectroscopy.more » « less
-
Abstract Dual-comb spectroscopy has been proven beneficial in molecular characterization but remains challenging in the mid-infrared region due to difficulties in sources and efficient photodetection. Here we introduce cross-comb spectroscopy, in which a mid-infrared comb is upconverted via sum-frequency generation with a near-infrared comb of a shifted repetition rate and then interfered with a spectral extension of the near-infrared comb. We measure CO 2 absorption around 4.25 µm with a 1-µm photodetector, exhibiting a 233-cm −1 instantaneous bandwidth, 28000 comb lines, a single-shot signal-to-noise ratio of 167 and a figure of merit of 2.4 × 10 6 Hz 1/2 . We show that cross-comb spectroscopy can have superior signal-to-noise ratio, sensitivity, dynamic range, and detection efficiency compared to other dual-comb-based methods and mitigate the limits of the excitation background and detector saturation. This approach offers an adaptable and powerful spectroscopic method outside the well-developed near-IR region and opens new avenues to high-performance frequency-comb-based sensing with wavelength flexibility.more » « less
-
The classic self-referenced frequency comb acts as an unrivaled ruler for precision optical metrology in both time and frequency. Two decades after its invention, the frequency comb is now used in numerous active sensing applications. Many of these applications, however, are limited by the tradeoffs inherent in the rigidity of the comb output and operate far from quantum-limited sensitivity. Here we demonstrate an agile programmable frequency comb where the pulse time and phase are digitally controlled with +/- 2 attosecond accuracy. This agility enables quantum-limited sensitivity in sensing applications since the programmable comb can be configured to coherently track weak returning pulse trains at the shot-noise limit. To highlight its capabilities, we use this programmable comb in a ranging system, reducing the detection threshold by ~5,000-fold to enable nearly quantum-limited ranging at mean pulse photon number of 1/77 while retaining the full accuracy and precision of a rigid frequency comb. Beyond ranging and imaging, applications in time/frequency metrology, comb-based spectroscopy, pump-probe experiments, and compressive sensing should benefit from coherent control of the comb-pulse time and phase.more » « less
-
Complex coacervation is a widely utilized technique for effecting phase separation, though predictive understanding of molecular-level details remains underdeveloped. Here, we couple coarse-grained Monte Carlo simulations with experimental efforts using a polypeptide-based model system to investigate how a comb-like architecture affects complex coacervation and coacervate stability. Specifically, the phase separation behavior of linear polycation-linear polyanion pairs was compared to that of comb polycation-linear polyanion and comb polycation-comb polyanion pairs. The comb architecture was found to mitigate cooperative interactions between oppositely charged polymers, as no discernible phase separation was observed for comb-comb pairs and complex coacervation of linear-linear pairs yielded stable coacervates at higher salt concentration than linear-comb pairs. This behavior was attributed to differences in counterion release by linear vs. comb polymers during polyeletrolyte complexation. Additionally, the comb polycation formed coacervates with both stereoregular poly( l -glutamate) and racemic poly( d , l -glutamate), whereas the linear polycation formed coacervates only with the racemic polyanion. In contrast, solid precipitates were obtained from mixtures of stereoregular poly( l -lysine) and poly( l -glutamate). Moreover, the formation of coacervates from cationic comb polymers incorporating up to ∼90% pendant zwitterionic groups demonstrated the potential for inclusion of comonomers to modulate the hydrophilicity and/or other properties of a coacervate-forming polymer. These results provide the first detailed investigation into the role of polymer architecture on complex coacervation using a chemically and architecturally well-defined model system, and highlight the need for additional research on this topic.more » « less
An official website of the United States government

