Motivated by the great success of classical generative models in machine learning, enthusiastic exploration of their quantum version has recently started. To depart on this journey, it is important to develop a relevant metric to evaluate the quality of quantum generative models; in the classical case, one such example is the (classical) inception score (cIS). In this paper, as a natural extension of cIS, we propose the quantum inception score (qIS) for quantum generators. Importantly, qIS relates the quality to the Holevo information of the quantum channel that classifies a given dataset. In this context, we show several properties of qIS. First, qIS is greater than or equal to the corresponding cIS, which is defined through projection measurements on the system output. Second, the difference between qIS and cIS arises from the presence of quantum coherence, as characterized by the resource theory of asymmetry. Third, when a set of entangled generators is prepared, there exists a classifying process leading to the further enhancement of qIS. Fourth, we harness the quantum fluctuation theorem to characterize the physical limitation of qIS. Finally, we apply qIS to assess the quality of the one-dimensional spin chain model as a quantum generative model, with the quantum convolutional neural network as a quantum classifier, for the phase classification problem in the quantum many-body physics. Published by the American Physical Society2024 
                        more » 
                        « less   
                    
                            
                            Molecular transistors as substitutes for quantum information applications
                        
                    
    
            Abstract Applications of quantum information science (QIS) generally rely on the generation and manipulation of qubits. Still, there are ways to envision a device with a continuous readout, but without the entangled states. This concise perspective includes a discussion on an alternative to the qubit, namely the solid-state version of the Mach–Zehnder interferometer, in which the local moments and spin polarization replace light polarization. In this context, we provide some insights into the mathematics that dictates the fundamental working principles of quantum information processes that involve molecular systems with large magnetic anisotropy. Transistors based on such systems lead to the possibility of fabricating logic gates that do not require entangled states. Furthermore, some novel approaches, worthy of some consideration, exist to address the issues pertaining to the scalability of quantum devices, but face the challenge of finding the suitable materials for desired functionality that resemble what is sought from QIS devices. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2003057
- PAR ID:
- 10454917
- Date Published:
- Journal Name:
- Journal of Physics: Condensed Matter
- Volume:
- 34
- Issue:
- 44
- ISSN:
- 0953-8984
- Page Range / eLocation ID:
- 441501
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Bennett, M.; Frank, B.; Vieyra, R. (Ed.)As the field of Quantum Information Science (QIS) continues to advance, there is an increased need for a quantum-smart workforce to address the needs of the growing quantum industry. As institutions begin to expand their course offerings, there is a unique opportunity for discipline-based education researchers to have an impact on the curricular and pedagogical choices being made in these courses. As a first step, it is necessary for education researchers to have a representative picture of what QIS education currently looks like. We reviewed recent course catalogues from a large sample of institutions in the United States looking for courses focused on QIS content. Our conservative analysis reveals that roughly a quarter of the institutions we reviewed offer QIS courses. While encouraging for such an emerging field, we found disparities in the types of institutions offering these courses as the vast majority were Doctoral-granting institutions. Additionally, we found that some classifications of minority serving institutions were much less likely to offer a QIS course (for example Historically Black Colleges and Universities or Predominantly Black Institutions), while Asian American and Native American Pacific Islander serving institutions were more likely than the national average to offer a QIS course. These disparities may lead to further racial, socioeconomic, and geographic disparity in the future quantum workforce. We also found that there was no single department that offered a majority of the QIS courses, indicating that the best efforts to improve QIS education will need to consider the multi-disciplinary nature of the field of quantum information science.more » « less
- 
            Quantum information science (QIS) is an emerging interdisciplinary field at the intersection of physics, computer science, electrical engineering, and mathematics leveraging the laws of quantum mechanics to circumvent classical limitations on information processing. With QIS coursework proliferating across US institutions, including at the undergraduate level, we argue that it is imperative that ethics and social responsibility be incorporated into QIS education from the beginning. We discuss ethical issues of particular relevance to QIS education that educators may wish to incorporate into their curricula. We then report on findings from focus interviews with six faculty who have taught introductory QIS courses, focusing on barriers to and opportunities for incorporation of ethics and social responsibility (ESR) into the QIS classroom. Few faculty had explicitly considered discussion of ethical issues in the classroom prior to the interview, yet instructor attitudes shifted markedly in support of incorporating ESR in the classroom as a result of the interview process itself. Taking into account faculty's perception of obstacles to discussing issues of ESR in coursework, we propose next steps toward making ESR education in the QIS classroom a reality.more » « less
- 
            Quantum information science (QIS) is critical to the future of economic and national security, commerce, and technology). There is a broad need to develop a "quantum smart" workforce with some on critical topics, such as quantum concepts that are relevant to everyday experiences in information security, smart phones, computers, and other widely used technology. The Quantum for All project, funded by the US National Science Foundation, provides opportunities for students to learn about various aspects of quantum science by providing professional development for STEM educators to learn and practice QIS. We utilize a trainer of trainer approach. In this paper we will discuss the content areas and provide an outline of the professional development model. We will also examine growth in teacher content knowledge and their confidence in that content knowledge. Our preliminary results are that the workshops are effective in raising both metrics as measured by pre- and post-surveys, however, there are differences between the content areas. We will examine these differences and provide possible reasons for the results.more » « less
- 
            Abstract The ability to engineer parallel, programmable operations between desired qubits within a quantum processor is key for building scalable quantum information systems 1,2 . In most state-of-the-art approaches, qubits interact locally, constrained by the connectivity associated with their fixed spatial layout. Here we demonstrate a quantum processor with dynamic, non-local connectivity, in which entangled qubits are coherently transported in a highly parallel manner across two spatial dimensions, between layers of single- and two-qubit operations. Our approach makes use of neutral atom arrays trapped and transported by optical tweezers; hyperfine states are used for robust quantum information storage, and excitation into Rydberg states is used for entanglement generation 3–5 . We use this architecture to realize programmable generation of entangled graph states, such as cluster states and a seven-qubit Steane code state 6,7 . Furthermore, we shuttle entangled ancilla arrays to realize a surface code state with thirteen data and six ancillary qubits 8 and a toric code state on a torus with sixteen data and eight ancillary qubits 9 . Finally, we use this architecture to realize a hybrid analogue–digital evolution 2 and use it for measuring entanglement entropy in quantum simulations 10–12 , experimentally observing non-monotonic entanglement dynamics associated with quantum many-body scars 13,14 . Realizing a long-standing goal, these results provide a route towards scalable quantum processing and enable applications ranging from simulation to metrology.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    