skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fleur: Social Values Orientation for Robust Norm Emergence
By regulating agent interactions, norms facilitate coordination in multiagent systems. We investigate challenges and opportunities in the emergence of norms of prosociality, such as vaccination and mask wearing. Little research on norm emergence has incorporated social preferences, which determines how agents behave when others are involved. We evaluate the influence of preference distributions in a society on the emergence of prosocial norms. We adopt the Social Value Orientation (SVO) framework, which places value preferences along the dimensions of self and other. SVO brings forth the aspects of values most relevant to prosociality. Therefore, it provides an effective basis to structure our evaluation. We find that including SVO in agents enables (1) better social experience; and (2) robust norm emergence.  more » « less
Award ID(s):
2116751
PAR ID:
10454937
Author(s) / Creator(s):
Date Published:
Journal Name:
15th International Workshop on Coordination, Organizations, Institutions, Norms, and Ethics for Governance of Multi-Agent Systems
Page Range / eLocation ID:
185-200
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Multi-agent systems provide a basis for developing systems of autonomous entities and thus find application in a variety of domains. We consider a setting where not only the member agents are adaptive but also the multi-agent system viewed as an entity in its own right is adaptive. Specifically, the social structure of a multi-agent system can be reflected in the social norms among its members. It is well recognized that the norms that arise in society are not always beneficial to its members. We focus on prosocial norms, which help achieve positive outcomes for society and often provide guidance to agents to act in a manner that takes into account the welfare of others. Specifically, we propose Cha, a framework for the emergence of prosocial norms. Unlike previous norm emergence approaches, Cha supports continual change to a system (agents may enter and leave) and dynamism (norms may change when the environment changes). Importantly, Cha agents incorporate prosocial decision-making based on inequity aversion theory, reflecting an intuition of guilt arising from being antisocial. In this manner, Cha brings together two important themes in prosociality: decision-making by individuals and fairness of system-level outcomes. We demonstrate via simulation that Cha can improve aggregate societal gains and fairness of outcomes. 
    more » « less
  2. Social norms characterize collective and acceptable group conducts in human society. Furthermore, some social norms emerge from interactions of agents or humans. To achieve agent autonomy and make norm satisfaction explainable, we include emotions into the normative reasoning process, which evaluates whether to comply or violate a norm. Specifically, before selecting an action to execute, an agent observes the environment and infers the state and consequences with its internal states after norm satisfaction or violation of a social norm. Both norm satisfaction and violation provoke further emotions, and the subsequent emotions affect norm enforcement. This paper investigates how modeling emotions affect the emergence and robustness of social norms via social simulation experiments. We find that an ability in agents to consider emotional responses to the outcomes of norm satisfaction and violation (1) promotes norm compliance; and (2) improves societal welfare. 
    more » « less
  3. A multiagent system is a society of autonomous agents whose interactions can be regulated via social norms. In general, the norms of a society are not hardcoded but emerge from the agents’ interactions. Specifically, how the agents in a society react to each other’s behavior and respond to the reactions of others determines which norms emerge in the society. We think of these reactions by an agent to the satisfactory or unsatisfactory behaviors of another agent as communications from the first agent to the second agent. Understanding these communications is a kind of social intelligence: these communications provide natural drivers for norm emergence by pushing agents toward certain behaviors, which can become established as norms. Whereas it is well-known that sanctioning can lead to the emergence of norms, we posit that a broader kind of social intelligence can prove more effective in promoting cooperation in a multiagent system. Accordingly, we develop Nest, a framework that models social intelligence via a wider variety of communications and understanding of them than in previous work. To evaluate Nest, we develop a simulated pandemic environment and conduct simulation experiments to compare Nest with baselines considering a combination of three kinds of social communication: sanction, tell, and hint. We find that societies formed of Nest agents achieve norms faster. Moreover, Nest agents effectively avoid undesirable consequences, which are negative sanctions and deviation from goals, and yield higher satisfaction for themselves than baseline agents despite requiring only an equivalent amount of information. 
    more » « less
  4. null (Ed.)
    The ability to predict when societies will replace one social norm for another can have significant implications for welfare, especially when norms are detrimental. A popular theory poses that the pressure to conform to social norms creates tipping thresholds which, once passed, propel societies toward an alternative state. Predicting when societies will reach a tipping threshold, however, has been a major challenge because of the lack of experimental data for evaluating competing models. We present evidence from a large-scale laboratory experiment designed to test the theoretical predictions of a threshold model for social tipping and norm change. In our setting, societal preferences change gradually, forcing individuals to weigh the benefit from deviating from the norm against the cost from not conforming to the behavior of others. We show that the model correctly predicts in 96% of instances when a society will succeed or fail to abandon a detrimental norm. Strikingly, we observe widespread persistence of detrimental norms even when individuals determine the cost for nonconformity themselves as they set the latter too high. Interventions that facilitate a common understanding of the benefits from change help most societies abandon detrimental norms. We also show that instigators of change tend to be more risk tolerant and to dislike conformity more. Our findings demonstrate the value of threshold models for understanding social tipping in a broad range of social settings and for designing policies to promote welfare. 
    more » « less
  5. Norms help regulate a society. Norms may be explicit (represented in structured form) or implicit. We address the emergence of explicit norms by developing agents who provide and reason about explanations for norm violations in deciding sanctions and identifying alternative norms. These agents use a genetic algorithm to produce norms and reinforcement learning to learn the values of these norms.We find that applying explanations leads to norms that provide better cohesion and goal satisfaction for the agents. Our results are stable for societies with differing attitudes of generosity. 
    more » « less