skip to main content


Title: Impacts of urban decline on local climatology: A comparison of growing and shrinking cities in the post-industrial Rust Belt
Cities such as Detroit, MI in the post-industrial Rust Belt region of the United States, have been experiencing a decline in both population and economy since the 1970's. These “shrinking cities” are characterized by aging infrastructure and increasing vacant areas, potentially resulting in more green space. While in growing cities research has demonstrated an “urban heat island” effect resulting from increased temperatures with increased urbanization, little is known about how this may be different if a city shrinks due to urban decline. We hypothesize that the changes associated with shrinking cities will have a measurable impact on their local climatology that is different than in areas experiencing increased urbanization. Here we present our analysis of historical temperature and precipitation records (1900–2020) from weather stations positioned in multiple shrinking cities from within the Rust Belt region of the United States and in growing cities within and outside of this region. Our results suggest that while temperatures are increasing overall, these increases are lower in shrinking cities than those cities that are continuing to experience urban growth. Our analysis also suggests there are differences in precipitation trends between shrinking and growing cities. We also highlight recent climate data in Detroit, MI in the context of these longer-term changes in climatology to support urban planning and management decisions that may influence or be influenced by these trends.  more » « less
Award ID(s):
2126206
NSF-PAR ID:
10454952
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in Climate
Volume:
5
ISSN:
2624-9553
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Flooding is a function of hydrologic, climatologic, and land use characteristics. However, the relative contribution of these factors to flood risk over the long-term is uncertain. In response to this knowledge gap, this study quantifies how urbanization and climatological trends influenced flooding in the greater Houston region during Hurricane Harvey. The region—characterized by extreme precipitation events, low topographic relief, and clay-dominated soils—is naturally flood prone, but it is also one of the fastest growing urban areas in the United States. This rapid growth has contributed to increased runoff volumes and rates in areas where anthropogenic climate changes has also been shown to be contributing to extreme precipitation. To disentangle the relative contributions of urban development and climatic changes on flooding during Hurricane Harvey, we simulate catchment response using a spatially-distributed hydrologic model under 1900 and 2017 conditions. This approach provides insight into how timing, volume, and peak discharge in response to Harvey-like events have evolved over more than a century. Results suggest that over the past century, urban development and climate change have had a large impact on peak discharge at stream gauges in the Houston region, where development alone has increased peak discharges by 54% (±28%) and climate change has increased peak discharge by about 20% (±3%). When combined, urban development and climate change nearly doubled peak discharge (84% ±35%) in the Houston area during Harvey compared to a similar event in 1900, suggesting that land use change has magnified the effects of climate change on catchment response. The findings support a precautionary approach to flood risk management that explicitly considers how current land use decisions may impact future conditions under varying climate trends, particularly in low-lying coastal cities.

     
    more » « less
  2. Abstract

    Urbanization often results in biodiversity loss and homogenization, but this result is not universal and there is substantial variability in the spatiotemporal effects of urbanization on wildlife across cities and taxa. Areas with lower population and housing density are some of the fastest-growing regions in the western United States; thus, more research in these areas could offer additional insight into the effects of urbanization on wildlife and the potential importance of wild spaces in maintaining a diverse biotic community surrounding developed areas. To address this need, we conducted a study to identify the effects of urbanization (i.e. housing density) on mammals along a housing density gradient from wilderness to suburbia in Missoula, Montana. We deployed 178 motion-activated trail cameras at random sites within urban/suburban, exurban, rural, and wild regions from May to October 2019 to 2020. We identified all mammals >150 g, then evaluated how housing density influenced: (i) occupancy and (ii) species richness using multispecies occupancy models; (iii) relative abundance using Poisson models; and (iv) diel activity patterns using kernel density estimation and logistic regression. Urbanization was the strongest driver of mammal distribution, with a linear decline in mammal species richness as housing density increased. Urbanization also had strong effects on occupancy and detection rates, with larger-bodied mammals generally having stronger negative associations. Overall, mammal relative abundance was highest in suburban regions; however, this effect was largely driven by White-tailed Deer. Natural environmental factors explained most changes in mammal nocturnal activity; however, urbanization strongly affected nocturnality in some species, with Black Bear and White-tailed Deer becoming more nocturnal and Red Fox and Northern Raccoon becoming less nocturnal as housing density increased. While our study confirms that some mammals can live and thrive in developed areas, it emphasizes the importance of maintaining wild areas for those species that cannot.

     
    more » « less
  3. Abstract

    Urban fragmentation can reduce gene flow that isolates populations, reduces genetic diversity and increases population differentiation, all of which have negative conservation implications. Alternatively, gene flow may actually be increased among urban areas consistent with an urban facilitation model. In fact, urban adapter pests are able to thrive in the urban environment and may be experiencing human‐mediated transport. Here, we used social network theory with a population genetic approach to investigate the impact of urbanization on genetic connectivity in the Western black widow spider, as an urban pest model of human health concern. We collected genomewide single nucleotide polymorphism variation from mitochondrial and nuclear double‐digest RAD (ddRAD) sequence data sets from 210 individuals sampled from 11 urban and 10 nonurban locales across its distribution of the Western United States. From urban and nonurban contrasts of population, phylogenetic, and network analyses, urban locales have higher within‐population genetic diversity, lower between‐population genetic differentiation and higher estimates of genetic connectivity. Social network analyses show that urban locales not only have more connections, but can act as hubs that drive connectivity among nonurban locales, which show signatures of historical isolation. These results are consistent with an urban facilitation model of gene flow and demonstrate the importance of sampling multiple cities and markers to identify the role that urbanization has had on larger spatial scales. As the urban landscape continues to grow, this approach will help determine what factors influence the spread and adaptation of pests, like the venomous black widow spider, in building policies for human and biodiversity health.

     
    more » « less
  4. Abstract

    Using data from the Environmental Protection Agency’s Chemical Speciation Network, we have characterized trends in PM2.5transition metals in urban areas across the United States for the period 2001–2016. The metals included in this analysis—Cr, Cu, Fe, Mn, Ni, V, and Zn—were selected based upon their abundance in PM2.5, known sources, and links to toxicity. Ten cities were included to provide broad geographic coverage, diverse source influences, and climatology: Atlanta (ATL), Baltimore (BAL), Chicago (CHI), Dallas (DAL), Denver (DEN), Los Angeles (LA), New York City (NYC), Phoenix (PHX), Seattle (SEA), and St. Louis (STL). The concentrations of V and Zn decreased in all ten cities, though the V decreases were more substantial. Cr concentrations increased in cities in the East and Midwest, with a pronounced spike in concentrations in 2013. The National Emissions Inventory was used to link sources with the observed trends; however, the causes of the broad Cr concentration increases and 2013 spike are not clear. Analysis of PM2.5metal concentrations in port versus non-port cities showed different trends for Ni, suggesting an important but decreasing influence of marine emissions. The concentrations of most PM2.5metals decreased in LA, STL, BAL, and SEA while concentrations of four of the seven metals (Cr, Fe, Mn, Ni) increased in DAL over the same time. Comparisons of the individual metals to overall trends in PM2.5suggest decoupled sources and processes affecting each. These metals may have an enhanced toxicity compared to other chemical species present in PM, so the results have implications for strategies to measure exposures to PM and the resulting human health effects.

     
    more » « less
  5. Urbanization has caused environmental changes, such as urban heat islands (UHIs), that affect terrestrial ecosystems. However, how and to what extent urbanization affects plant phenology remains relatively unexplored. Here, we investigated the changes in the satellite-derived start of season (SOS) and the covariation between SOS and temperature ( R T ) in 85 large cities across the conterminous United States for the period 2001–2014. We found that 1) the SOS came significantly earlier (6.1 ± 6.3 d) in 74 cities and R T was significantly weaker (0.03 ± 0.07) in 43 cities when compared with their surrounding rural areas ( P < 0.05); 2) the decreased magnitude in R T mainly occurred in cities in relatively cold regions with an annual mean temperature <17.3 °C (e.g., Minnesota, Michigan, and Pennsylvania); and 3) the magnitude of urban−rural difference in both SOS and R T was primarily correlated with the intensity of UHI. Simulations of two phenology models further suggested that more and faster heat accumulation contributed to the earlier SOS, while a decrease in required chilling led to a decline in R T magnitude in urban areas. These findings provide observational evidence of a reduced covariation between temperature and SOS in major US cities, implying the response of spring phenology to warming conditions in nonurban environments may decline in the warming future. 
    more » « less