skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synergy between the proton conducting and a mixed electronic and oxygen ionic conducting phases in a composite anode for electrocatalytic propane ODH
Award ID(s):
1932638
PAR ID:
10454974
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Applied Catalysis A: General
Volume:
658
Issue:
C
ISSN:
0926-860X
Page Range / eLocation ID:
119169
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fire models predict fire behavior and effects. However, there is a need to know how confident users can be in forecasts. This work developed a probabilistic methodology based on ensemble simulations that incorporated uncertainty in weather, fuel loading, and model physics parameters. It provided information on the most likely forecast scenario, confidence levels, and potential outliers. It also introduced novel ways to communicate uncertainty in calculation and graphical representation and applied this to diverse wildfires using ensemble simulations of the CAWFE coupled weather–fire model ranging from 12 to 26 members. The ensembles captured many features but spread was narrower than expected, especially with varying weather and fuel inputs, suggesting errors may not be easily mitigated by improving input data. Varying physics parameters created a wider spread, including identifying an outlier, underscoring modeling knowledge gaps. Uncertainty was communicated using burn probability, spread rate, and heat flux, a fire intensity metric related to burn severity. Despite limited ensemble spread, maps of mean and standard deviation exposed event times and locations where fire behavior was more uncertain, requiring more management or observations. Interpretability was enhanced by replacing traditional hot–cold color palettes with ones that accommodate the vision-impaired and adhere to web accessibility standards. 
    more » « less
  2. Inherently conductive polymers (CPs) can generally be switched between two or more stable oxidation states, giving rise to changes in properties including conductivity, color, and volume. The ability to prepare CP nanofibers could lead to applications including water purification, sensors, separations, nerve regeneration, wound healing, wearable electronic devices, and flexible energy storage. Electrospinning is a relatively inexpensive, simple process that is used to produce polymer nanofibers from solution. The nanofibers have many desirable qualities including high surface area per unit mass, high porosity, and low weight. Unfortunately, the low molecular weight and rigid rod nature of most CPs cannot yield enough chain entanglement for electrospinning, instead yielding polymer nanoparticles via an electrospraying process. Common workarounds include co-extruding with an insulating carrier polymer, coaxial electrospinning, and coating insulating electrospun polymer nanofibers with CPs. This review explores the benefits and drawbacks of these methods, as well as the use of these materials in sensing, biomedical, electronic, separation, purification, and energy conversion and storage applications. 
    more » « less
  3. Klimchitskaya, Galina L.; Mostepanenko, Vladimir M. (Ed.)
    Using the formulation of the electromagnetic Green’s function of a perfectly conducting cone in terms of analytically continued angular momentum, we compute the Casimir–Polder interaction energy of a cone with a polarizable particle. We introduce this formalism by first reviewing the analogous approach for a perfectly conducting wedge, and then demonstrate the calculation through numerical evaluation of the resulting integrals. 
    more » « less