Summary Intraspecific variation in functional traits may mediate tree species' drought resistance, yet whether trait variation is due to genotype (G), environment (E), or G×E interactions remains unknown. Understanding the drivers of intraspecific trait variation and whether variation mediates drought response can improve predictions of species' response to future drought.Using populations of quaking aspen spanning a climate gradient, we investigated intraspecific variation in functional traits in the field as well as the influence of G and E among propagules in a common garden. We also tested for trait‐mediated trade‐offs in growth and drought stress tolerance.We observed intraspecific trait variation among the populations, yet this variation did not necessarily translate to higher drought stress tolerance in hotter/drier populations. Additionally, plasticity in the common garden was low, especially in propagules derived from the hottest/driest population. We found no growth–drought stress tolerance trade‐offs and few traits exhibited significant relationships with mortality in the natural populations, suggesting that intraspecific trait variation among the traits measured did not strongly mediate responses to drought stress.Our results highlight the limits of trait‐mediated responses to drought stress and the complex G×E interactions that may underlie drought stress tolerance variation in forests in dry environments.
more »
« less
Widespread drought‐induced tree mortality at dry range edges indicates that climate stress exceeds species' compensating mechanisms
Abstract Drought‐induced tree mortality is projected to increase due to climate change, which will have manifold ecological and societal impacts including the potential to weaken or reverse the terrestrial carbon sink. Predictions of tree mortality remain limited, in large part because within‐species variations in ecophysiology due to plasticity or adaptation and ecosystem adjustments could buffer mortality in dry locations. Here, we conduct a meta‐analysis of 50 studies spanning >100 woody plant species globally to quantify how populations within species vary in vulnerability to drought mortality and whether functional traits or climate mediate mortality patterns. We find that mortality predominantly occurs in drier populations and this pattern is more pronounced in species with xylem that can tolerate highly negative water potentials, typically considered to be an adaptive trait for dry regions, and species that experience higher variability in water stress. Our results indicate that climate stress has exceeded physiological and ecosystem‐level tolerance or compensating mechanisms by triggering extensive mortality at dry range edges and provides a foundation for future mortality projections in empirical distribution and mechanistic vegetation models.
more »
« less
- Award ID(s):
- 1711243
- PAR ID:
- 10454998
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Global Change Biology
- Volume:
- 25
- Issue:
- 11
- ISSN:
- 1354-1013
- Page Range / eLocation ID:
- p. 3793-3802
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Drought-induced productivity reductions and tree mortality have been increasing in recent decades in forests around the globe. Developing adaptation strategies hinges on an adequate understanding of the mechanisms governing the drought vulnerability of forest stands. Prescribed reduction in stand density has been used as a management tool to reduce water stress and wildfire risk, but the processes that modulate fine-scale variations in plant water supply and water demand are largely missing in ecosystem models. We used an ecohydrological model that couples plant hydraulics with groundwater hydrology to examine how within-stand variations in tree spatial arrangements and topography might mitigate forest vulnerability to drought at individual-tree and stand scales. Our results demonstrated thinning generally ameliorated plant hydraulic stress and improved carbon and water fluxes of the remaining trees, although the effectiveness varied by climate and topography. Variable thinning that adjusted thinning intensity based on topography-mediated water availability achieved higher stand productivity and lower mortality risk, compared to evenly-spaced thinning at comparable intensities. The results from numerical experiments provided mechanistic evidence that topography mediates the effectiveness of thinning and highlighted the need for an explicit consideration of within-stand heterogeneity in trees and abiotic environments when designing forest thinning to mitigate drought impacts.more » « less
-
Abstract Structural overshoots, where biomass is overallocated to tree leaf area compared to sapwood area, could result in lethal stress during droughts. Climate change may alter climatic cues that drive leaf area production, such as temperature and precipitation, as well as seasonal dynamics that underlie summer rainfall due to the North American Monsoon (NAM). Combined, this could lead to temporal mismatches between leaf area‐driven water demand and availability, and increased drought‐induced mortality events.We used leaf area to sapwood area ratios to investigate the prevalence of overshoots and whether overshoots increase drought‐induced mortality. We measured populations of aspen spanning the northern transition zone of the NAM during and following severe droughts.We observed increased overshoots and drought‐induced mortality in southern latitude populations that rely more on summer monsoon rainfall. Changes in convective activity from low snowpack the preceding winter may be a climatic driver of heightened summer monsoon rainfall in the region and therefore may also trigger increased production of leaf area during wetter summers.Our results suggest that an overshoot of leaf area to sapwood area (AL:AS) ratios is associated with drought‐induced tree mortality and highlight that climate‐change driven alterations to the NAM could have major consequences for tree species' acclimation to environmental change. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Abstract. Extreme drought events in Amazon forests are expected to become more frequent and more intense with climate change, threatening ecosystem function and carbon balance. Yet large uncertainties exist on the resilience of this ecosystem to drought. A better quantification of tree hydraulics and mortality processes is needed to anticipate future drought effects on Amazon forests. Most state-of-the-art dynamic global vegetation models are relatively poor in their mechanistic description of these complex processes. Here, we implement a mechanistic plant hydraulic module within the ORCHIDEE-CAN-NHA r7236 land surface model to simulate the percentage loss of conductance (PLC) and changes in water storage among organs via a representation of the water potentials and vertical water flows along the continuum from soil to roots, stems and leaves. The model was evaluated against observed seasonal variability in stand-scale sap flow, soil moisture and productivity under both control and drought setups at the Caxiuanã throughfall exclusion field experiment in eastern Amazonia between 2001 and 2008. A relationship between PLC and tree mortality is built in the model from two empirical parameters, the cumulated duration of drought exposure that triggers mortality, and the mortality fraction in each day exceeding the exposure. Our model captures the large biomass drop in the year 2005 observed 4 years after throughfall reduction, and produces comparable annual tree mortality rates with observation over the study period. Our hydraulic architecture module provides promising avenues for future research in assimilating experimental data to parameterize mortality due to drought-induced xylem dysfunction. We also highlight that species-based (isohydric or anisohydric) hydraulic traits should be further tested to generalize the model performance in predicting the drought risks.more » « less
-
Understanding how environmental adaptations mediate plant and ecosystem responses becomes increasingly important under accelerating global environmental change. Multi-stemmed trees, for example, differ in form and function from single-stemmed trees and may possess physiological advantages that allow for persistence during stressful climatic events such as extended drought. Following the worst drought in Hawaii in a century, we examined patterns of stem abundance and turnover in a Hawaiian lowland dry forest (LDF) and a montane wet forest (MWF) to investigate how multi-stemmed trees might influence site persistence, and how stem abundance and turnover relate to key functional traits. We found stem abundance and multi-stemmed trees to be an important component for climate resilience within the LDF. The LDF had higher relative abundance of multi-stemmed trees, stem abundance, and mean stem abundance compared to a reference MWF. Within the LDF, multi-stemmed trees had higher relative stem abundance (i.e., percent composition of stems to the total number of stems in the LDF) and higher estimated aboveground carbon than single-stemmed trees. Stem abundance varied among species and tree size classes. Stem turnover (i.e., change in stem abundance between five-year censuses) varied among species and tree size classes and species mean stem turnover was correlated with mean species stem abundance per tree. At the plot level, stem abundance per tree is also a predictor of survival, though mortality did not differ between multiple- and single-stemmed trees. Lastly, species with higher mean stem abundance per tree tended to have traits associated with a higher light-saturated photosynthetic rate, suggesting greater productivity in periods with higher water supply. Identifying the traits that allow species and forest communities to persist in dry environments or respond to disturbance is useful for forecasting ecological climate resilience or potential for restoration in tropical dry forests.more » « less
An official website of the United States government
