skip to main content


Title: Age‐dependent dose calculations for common PET radionuclides and brain radiotracers in nonhuman primate computational models
Purpose

The combination of nonhuman primates (NHPs) with the state‐of‐the‐art molecular imaging technologies allows for within‐subject longitudinal research aiming at gaining new insights into human normal and disease conditions and provides an ideal foundation for future translational studies of new diagnostic tools, medical interventions, and therapies. However, radiation dose estimations for nonhuman primates from molecular imaging probes are lacking and are difficult to perform experimentally. The aim of this work is to construct age‐dependent NHP computational model series to estimate the absorbed dose to NHP specimens in common molecular imaging procedures.

Materials and methods

A series of NHP models from baby to adult were constructed based on nonuniform rational B‐spline surface (NURBS) representations. Particle transport was simulated using Monte Carlo calculations to estimate S‐values from nine positron‐emitting radionuclides and absorbed doses from PET radiotracers.

Results

Realistic age‐dependent NHP computational model series were developed. For most source‐target pairs in computational NHP models, differences between C‐11 S‐values were between −13.4% and −8.8%/kg difference in body weight while differences between F‐18 S‐values were between −12.9% and −8.0%/kg difference in body weight. The absorbed doses of11C‐labeled brain receptor substances,18F‐labeled brain receptor substances, and18F‐FDG in the brain ranged within 0.047–0.32 mGy/MBq, 0.25–1.63 mGy/MBq, and 0.32–2.12 mGy/MBq, respectively.

Conclusion

The absorbed doses to organs are significantly higher in the baby NHP model than in the adult model. These results can be used in translational longitudinal studies to estimate the cumulated absorbed organ doses in NHPs at various ages.

 
more » « less
NSF-PAR ID:
10455094
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Medical Physics
Volume:
47
Issue:
9
ISSN:
0094-2405
Page Range / eLocation ID:
p. 4465-4476
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mesoscopic calcium imaging enables studies of cell-type specific neural activity over large areas. A growing body of literature suggests that neural activity can be different when animals are free to move compared to when they are restrained. Unfortunately, existing systems for imaging calcium dynamics over large areas in non-human primates (NHPs) are table-top devices that require restraint of the animal’s head. Here, we demonstrate an imaging device capable of imaging mesoscale calcium activity in a head-unrestrained male non-human primate. We successfully miniaturize our system by replacing lenses with an optical mask and computational algorithms. The resulting lensless microscope can fit comfortably on an NHP, allowing its head to move freely while imaging. We are able to measure orientation columns maps over a 20 mm2field-of-view in a head-unrestrained macaque. Our work establishes mesoscopic imaging using a lensless microscope as a powerful approach for studying neural activity under more naturalistic conditions.

     
    more » « less
  2. Several problems challenge mesoscopic imaging in the brain: 1) Difficulty with positioning high-NA objectives near the brain; 2) Creating a flat imaging window against the surface of the brain; 3) Adjusting the imaging window in the face of changes in swelling and pressure in the brain; 4) Preventing growth of dura and biofilms that obscure the imaging window; 5) Follow-on MRI imaging of the animal post-implantation. We propose here an ultra-large window radiolucent implant to address these issues. Our approach provides a 2 cm diameter window for non-human primates (NHPs) that regulates pressure and employs a stable, strong, and thin design. The system is mechanically modeled and stress-tested to achieve access to the brain by large objectives, with design features that allow for manual repositioning of the imaging lens. To optimize the distance between the objective and the brain, we prioritize a thin implant design. A strong radiolucent implant is created using PEEK plastic, a strong, thermoresistant and biostable material. We heighten strength of the chamber’s attachment to the skull by using titanium screws that are normal to the surface of the bone at each point. The implant design has several parts and contemplates a potential method to maintain pressure on the brain. This method uses an engineered silicone mount to maintain even pressure of the imaging window on the brain’s surface, despite brain motion. The mechanical properties of the silicone are manipulated to closely resemble that of brain tissue to be more biomimetic and act as a cushion for motion. This method also allows for the manual repositioning of the cover slip to create a flat imaging window. Lastly, our approach prevents dural growth by blocking the migration of migratory biofilm-forming cells; we hypothesize that use of dynamic pressure maintenance on the brain is key to this method’s success. We are also investigating methods to elongate the longevity of the implant and imaging site, such as silver sputtering on implants and blue light therapy. These methods have produced an ultra-large field of view with 2P image results in <60,000 neurons. As such the chambers are expected to enhance recording window longevity and may prove to be a critical advance in NHP and human brain imaging. 
    more » « less
  3. Several problems challenge mesoscopic imaging in the brain: 1) Difficulty with positioning high-NA objectives near the brain; 2) Creating a flat imaging window against the surface of the brain; 3) Adjusting the imaging window in the face of changes in swelling and pressure in the brain; 4) Preventing growth of dura and biofilms that obscure the imaging window; 5) Follow-on MRI imaging of the animal post-implantation. We propose here an ultra-large window radiolucent implant to address these issues. Our approach provides a 2 cm diameter window for non-human primates (NHPs) that regulates pressure and employs a stable, strong, and thin design. The system is mechanically modeled and stress-tested to achieve access to the brain by large objectives, with design features that allow for manual repositioning of the imaging lens. To optimize the distance between the objective and the brain, we prioritize a thin implant design. A strong radiolucent implant is created using PEEK plastic, a strong, thermoresistant and biostable material. We heighten strength of the chamber’s attachment to the skull by using titanium screws that are normal to the surface of the bone at each point. The implant design has several parts and contemplates a potential method to maintain pressure on the brain. This method uses an engineered silicone mount to maintain even pressure of the imaging window on the brain’s surface, despite brain motion. The mechanical properties of the silicone are manipulated to closely resemble that of brain tissue to be more biomimetic and act as a cushion for motion. This method also allows for themanual repositioning of the cover slip to create a flat imaging window. Lastly, our approach prevents dural growth by blocking the migration of migratory biofilm-forming cells; we hypothesize that use of dynamic pressure maintenance on the brain is key to this method’s success. We are also investigating methods to elongate the longevity of the implant and imaging site, such as silver sputtering on implants and blue light therapy. These methods have produced an ultra-large field of view with 2P image results in <60,000 neurons. As such the chambers are expected to enhance recording window longevity and may prove to be a critical advance in NHP and human brain imaging. 
    more » « less
  4. Abstract

    Oxime antidotes regenerate organophosphate‐inhibited acetylcholinesterase (AChE). Although they share a common mechanism of AChE reactivation, the rate and amount of oxime that enters the brain are critical to the efficacy, a process linked to the oxime structure and charge. Using a platform based on the organophosphate [18F]‐VXS as a positron emission tomography tracer for active AChE, thein vivodistribution of [18F]‐VXS was evaluated after an LD50dose (250 μg/kg) of the organophosphate paraoxon (POX) and following oximes as antidotes. Rats given [18F]‐VXS tracer alone had significantly higher radioactivity (two‐ to threefold) in the heart and lung than rats given LD50POX at 20 or 60 min prior to [18F]‐VXS. When rats were given LD50POX followed by 2‐PAM (cationic), RS194b (ionizable), or monoisonitrosoacetone (MINA) (neutral), central nervous system (CNS) radioactivity returned to levels at or above untreated naive rats (no POX), whereas CNS radioactivity did not increase in rats given the dication oximes HI‐6 or MMB‐4. MINA showed a significant, pairwise increase in CNS brain radioactivity compared with POX‐treated rats. This newin vivodynamic platform using [18F]‐VXS tracer measures and quantifies peripheral and CNS relative changes in AChE availability after POX exposure and is suitable for comparing oxime delivery and AChE reactivation in rats.

     
    more » « less
  5. Lau, Eric H. (Ed.)

    Beginning December 2016, sylvatic yellow fever (YF) outbreaks spread into southeastern Brazil, and Minas Gerais state experienced two sylvatic YF waves (2017 and 2018). Following these massive YF waves, we screened 187 free-living non-human primate (NHPs) carcasses collected throughout the state between January 2019 and June 2021 for YF virus (YFV) using RTqPCR. One sample belonging to aCallithrix, collected in June 2020, was positive for YFV. The viral strain belonged to the same lineage associated with 2017–2018 outbreaks, showing the continued enzootic circulation of YFV in the state. Next, using data from 781 NHPs carcasses collected in 2017–18, we used generalized additive mixed models (GAMMs) to identify the spatiotemporal and host-level drivers of YFV infection and intensity (an estimation of genomic viral load in the liver of infected NHP). Our GAMMs explained 65% and 68% of variation in virus infection and intensity, respectively, and uncovered strong temporal and spatial patterns for YFV infection and intensity. NHP infection was higher in the eastern part of Minas Gerais state, where 2017–2018 outbreaks affecting humans and NHPs were concentrated. The odds of YFV infection were significantly lower in NHPs from urban areas than from urban-rural or rural areas, while infection intensity was significantly lower in NHPs from urban areas or the urban-rural interface relative to rural areas. Both YFV infection and intensity were higher during the warm/rainy season compared to the cold/dry season. The higher YFV intensity in NHPs in warm/rainy periods could be a result of higher exposure to vectors and/or higher virus titers in vectors during this time resulting in the delivery of a higher virus dose and higher viral replication levels within NHPs. Further studies are needed to better test this hypothesis and further compare the dynamics of YFV enzootic cycles between different seasons.

     
    more » « less