skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tectonism and Its Relation to Magmatism Around Santorini Volcano From Upper Crustal P Wave Velocity
Abstract At extensional volcanic arcs, faulting often acts to localize magmatism. Santorini is located on the extended continental crust of the Aegean microplate and is one of the most active volcanoes of the Hellenic arc, but the relationship between tectonism and magmatism remains poorly constrained. As part of the Plumbing Reservoirs Of The Earth Under Santorini experiment, seismic data were acquired across the Santorini caldera and the surrounding region using a dense amphibious array of >14,300 marine sound sources and 156 short‐period seismometers, covering an area 120 km by 45 km. Here aPwave velocity model of the shallow, upper‐crustal structure (<3‐km depth), obtained using travel time tomography, is used to delineate fault zones, sedimentary basins, and tectono‐magmatic lineaments. Our interpretation of tectonic boundaries and regional faults are consistent with prior geophysical studies, including the location of basin margins and E‐W oriented basement faults within the Christiana Basin west of Santorini. Reduced seismic velocities within the basement east of Santorini, near the Anydros and Anafi Basins, are coincident with a region of extensive NE‐SW faulting and active seismicity. The structural differences between the eastern and western sides of Santorini are in agreement with previously proposed models of regional tectonic evolution. Additionally, we find that regional magmatism has been localized in NE‐SW trending basin‐like structures that connect the Christiana, Santorini, and Kolumbo volcanic centers. At Santorini itself, we find that magmatism has been localized along NE‐SW trending lineaments that are subparallel to dikes, active faults, and regional volcanic chains. These results show strong interaction between magmatism and active deformation.  more » « less
Award ID(s):
1459794
PAR ID:
10455113
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
124
Issue:
10
ISSN:
2169-9313
Page Range / eLocation ID:
p. 10610-10629
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In extending volcanic arcs such as the Aegean, tectonic processes exert a significant control on magmatism. Spanning scales from 1 to 10s of km, volcanic vents, edifices, and eruptive centers follow the orientation of, and are located near, fault zones. Whether this tectonic control on magmatism results from individual faults/fractures weakening the crust or because regional stresses control magma input into the crust is debated. Here we investigate the scales of tectonic and magmatic interactions, specifically focusing on the role of local‐scale (<10 km) faults/fractures in controlling magmatism. We infer local‐scale fault/fracture orientations from anisotropic active‐source P‐wave travel‐time tomography to investigate tectonic and magmatic interactions in the upper crust of Santorini Volcano, Greece, and the actively deforming region to the east. We use the anisotropy magnitude and seismic velocity reduction to model the relative distribution of both consistently oriented and randomly oriented faults/fractures. Our results show that oriented faulting/fracturing resulting from regional‐scale (>10 km) tectonic stresses is distributed broadly across the region at 2–3 km depth, approximately paralleling volcanic/magmatic features. On a local‐scale, magmatism is neither localized in areas of higher oriented fault/fracture density, nor is it accommodating enough extensional strain to inhibit oriented faulting/fracturing of host rock. The alignment of magmatic features shows strong tectonic control despite the lack of correlation with local oriented fault/fracture density. These results suggest that magmatic processes are strongly influenced by regional‐scale, not local‐scale, tectonic processes. We infer regional processes have a greater impact on magmatism than local features due to their greater effect at depth. 
    more » « less
  2. Prior to arrival on site, a decision was made to replace the original primary site (proposed Site CSK-13A) by an alternate site (proposed Site CSK-20A); hence, the latter became Site U1591. This was done to pass through a slightly more complete suite of reflectors in the 800–900 ms two-way traveltime (TWT) interval. Site U1591 is located ~8 km northwest of Christiani Island and ~20 km southwest of Santorini (Figure F1) at 514 meters below sea level (mbsl). It was drilled in three holes (U1591A–U1591C) to a maximum recovery depth of 902.7 meters below seafloor (mbsf) (all depths below seafloor are given using the core depth below seafloor, Method A [CSF-A], scale, except in Operations where the drilling depth below seafloor [DSF] scale is used). Average core recovery was similar in all three holes (U1591A= 66%; U1591B= 43%; U1591C= 58%). The drill site targeted the volcano-sedimentary fill of the Christiana Basin. This basin was believed to have formed by subsidence along an ENE–WSW fault system before the changing tectonic regime activated the current northeast–southwest rift system in which the Christiana-Santorini-Kolumbo (CSK) volcanic field lies (Tsampouraki-Kraounaki and Sakellariou, 2018; Preine et al., 2022a, 2022b). Christiana Basin is deeper than the Anhydros and Anafi Basins; its volcano-sedimentary fill potentially recorded the earlier volcanic history of the CSK volcanic field (including the products of Christiana and early Santorini), as well as younger Santorini and possibly Milos Volcano to the west along the Hellenic volcanic arc. The now-extinct Christiana Volcano produced lavas and tuffs of unknown ages (Aarburg and Frechen, 1999). An ignimbrite found on Christiani Island (one of the two small islands of Christiana Volcano), Santorini, and the nonvolcanic island of Anaphi, called the Christiani Ignimbrite, was identified (Keller et al., 2010). Six seismic units were previously recognized in the Christiana Basin (Preine et al., 2022a, 2022b; Figure F2). Site U1591 was chosen to pass through Seismic Units U1–U6, including volcaniclastics from Santorini and Christiana, and to target the top few meters of the prevolcanic basement below Unit U1. We received permission from the International Ocean Discovery Program (IODP) Environmental Protection and Safety Panel to drill to the Alpine basement at this site in an advanced piston corer/extended core barrel/rotary core barrel (APC/XCB/RCB) drilling strategy involving three holes. The aims of Site U1591 were (1) to better date the volcanic activity of Christiana using biostratigraphic and magnetostratigraphic means and determine whether the CSK volcanic field had Pliocene volcanism similar to the Milos Volcano farther west; (2) to relate the Christiana volcanism to subsidence along the ENE–WSW fault sets and to the activation of the northeast–southwest fault sets; and (3) to seek the submarine equivalent of the Christiani Ignimbrite. By using deeper coring (and seismic profiles) to reconstruct the volcanic, sedimentary, and tectonic histories of the Christiana Volcano, and possibly the Milos Volcano, we aimed to complement the Santorini and Kolumbo volcanic records of Sites U1589 and U1592 and therefore access a near-continuous time series of volcanism of the CSK volcanic field since rift inception. Site U1591 addressed scientific Objectives 1–4 and 6 of the Expedition 398 Scientific Prospectus (Druitt et al., 2022). 
    more » « less
  3. The objectives of International Ocean Discovery Program Expedition 398, Hellenic Arc Volcanic Field (11 December 2022 to 10 February 2023), were to study the volcanic record of the central Hellenic island arc; document the links and feedbacks between volcanism/magmatism, crustal tectonics, and sea level; investigate the processes and products of shallow submarine eruptions of silicic magma; and groundtruth the seismic stratigraphy of Santorini caldera. Reconstructing the subsidence history of the southern Aegean Sea and searching for deep life inside and outside of Santorini caldera were additional objectives. During the expedition, 10 primary and alternate sites that were originally proposed were drilled, in addition to 2 extra sites that were requested during the expedition. Outside of Santorini caldera, drilling penetrated the thick basin fills of the crustal rift system hosting the Christiana-Santorini-Kolumbo volcanic field, identifying numerous pumice and ash layers, some known from on land and others hitherto unknown, pushing back the onset of volcanism in the area into the Early Pleistocene or even Pliocene. Significant events of mass wasting into the basins, accompanied by very high sedimentation rates, were also documented. These basin sites served to groundtruth the seismic stratigraphy of the basins and open the way to unraveling relationships between volcanic activity and crustal rift pulses. Two sites of condensed sequences served to sample many volcanic layers within the detailed age-depth constraints provided mainly by biostratigraphy, as diagenetic effects complicated the magnetic reversal record significantly. Drilling penetrated the Alpine basement at three basin sites northeast of Santorini, whereas in the Christiana Basin to the southwest it penetrated a thick sequence of Messinian evaporites. Drilling inside Santorini caldera penetrated to ~120 meters below seafloor, less than planned due to hole instability issues but deep enough to groundtruth the seismic stratigraphy and sample the different layers. One intracaldera hole yielded a detailed tephra record of the history of the Kameni Islands, as well as possible evidence for deep bacterial colonies within the caldera. Despite variable recovery in the unstable pumice and ash deposits, the expedition was a significant success that may address almost all the scientific objectives once the laboratory work has been done. 
    more » « less
  4. The objectives of International Ocean Discovery Program Expedition 398, Hellenic Arc Volcanic Field (11 December 2022 to 10 February 2023), were to study the volcanic record of the central Hellenic island arc; document the links and feedbacks between volcanism/magmatism, crustal tectonics, and sea level; investigate the processes and products of shallow submarine eruptions of silicic magma; and groundtruth the seismic stratigraphy of Santorini caldera. Reconstructing the subsidence history of the southern Aegean Sea and searching for deep life inside and outside of Santorini caldera were additional objectives. During the expedition, 10 primary and alternate sites that were originally proposed were drilled, in addition to 2 extra sites that were requested during the expedition. Outside of Santorini caldera, drilling penetrated the thick basin fills of the crustal rift system hosting the Christiana-Santorini-Kolumbo volcanic field, identifying numerous pumice and ash layers, some known from on land and others hitherto unknown, pushing back the onset of volcanism in the area into the Early Pleistocene or even Pliocene. Significant events of mass wasting into the basins, accompanied by very high sedimentation rates, were also documented. These basin sites served to groundtruth the seismic stratigraphy of the basins and open the way to unraveling relationships between volcanic activity and crustal rift pulses. Two sites of condensed sequences served to sample many volcanic layers within the detailed age-depth constraints provided mainly by biostratigraphy, as diagenetic effects complicated the magnetic reversal record significantly. Drilling penetrated the Alpine basement at three basin sites northeast of Santorini, whereas in the Christiana Basin to the southwest it penetrated a thick sequence of Messinian evaporites. Drilling inside Santorini caldera penetrated to ~120 meters below seafloor, less than planned due to hole instability issues but deep enough to groundtruth the seismic stratigraphy and sample the different layers. One intracaldera hole yielded a detailed tephra record of the history of the Kameni Islands, as well as possible evidence for deep bacterial colonies within the caldera. Despite variable recovery in the unstable pumice and ash deposits, the expedition was a significant success that may address almost all the scientific objectives once the laboratory work has been done. 
    more » « less
  5. The objectives of International Ocean Discovery Program (IODP) Expedition 398, Hellenic Arc Volcanic Field (11 December 2022 to 10 February 2023), were to study the volcanic record of the central Hellenic island arc; document the links and feedbacks between volcanism/magmatism, crustal tectonics, and sea level; investigate the processes and products of shallow submarine eruptions of silicic magma; and groundtruth the seismic stratigraphy of Santorini caldera. Reconstructing the subsidence history of the southern Aegean Sea and searching for deep life inside and outside of Santorini caldera were additional objectives. The expedition drilled 10 primary and alternate sites that were originally proposed, in addition to 2 extra sites that were requested during the expedition. Outside of Santorini caldera, drilling penetrated the thick basin fills of the crustal rift system hosting the Christiana-Santorini-Kolumbo volcanic field, identifying numerous pumice and ash layers, some known from on land and others hitherto unknown, pushing back the onset of volcanism in the area into the Early Pleistocene or even Pliocene. Significant events of mass wasting into the basins, accompanied by very high sedimentation rates, were also documented. These basin sites served to groundtruth the seismic stratigraphy of the basins and to open the way to unraveling relationships between volcanic activity and crustal rift pulses. Two sites of condensed sequences on the basin margins served to sample many volcanic layers within the detailed age-depth constraints provided mainly by biostratigraphy, as diagenetic effects complicated the magnetic reversal record significantly. Drilling penetrated the Alpine basement at three basin sites northeast of Santorini, whereas in the Christiana Basin to the southwest it penetrated a thick sequence of Messinian evaporites. Drilling inside Santorini caldera penetrated to ~120 meters below seafloor (mbsf), less than planned due to hole instability issues but deep enough to groundtruth the seismic stratigraphy and to sample the different layers. One intracaldera hole yielded a detailed tephra record of the history of the Kameni Islands, as well as possible evidence for deep bacterial colonies within the caldera. Despite variable recovery in the unstable pumice and ash deposits, the expedition was a significant success that may address almost all the science objectives once the laboratory work has been done. A dense program of preexpedition and shipboard outreach during the expedition gave rise to 59 live ship-to-shore tours, reaching 6,400 people in 7 countries including many school children. A total of 51 journalists were contacted and 9 stories were written about the expedition, with a readership of almost 200,000 people. While in Santorini caldera, the ship hosted 12 documentarians and journalists, the future products of whom should include a 1.5 h documentary and a four-part TV series about Expedition 398. The expedition social media pages were active. Prior to the expedition, an exhibition, “In Search of Earth’s Secrets,” ran for a week on Santorini and was visited by more than 1,800 school children. 
    more » « less